Wed, 02 Dec 2015
16:00
C1

Quasihomomorphisms with non-commutative target

Nicolaus Heuer
(Oxford)
Abstract

Quasihomomorphisms (QHMs) are maps $f$ between groups such that the
homomorphic condition is boundedly satisfied. The case of QHMs with
abelian target is well studied and is useful for computing the second
bounded cohomology of groups. The case of target non-abelian has,
however, not been studied a lot.

We will see a technique for classifying QHMs $f: G \rightarrow H$ by Fujiwara and
Kapovich. We will give examples (sometimes with proofs!) for QHM in
various cases such as

  • the image $H$  hyperbolic groups,
  • the image $H$ discrete rank one isometries,
  • the preimage $G$ cyclic / free group, etc.

Furthermore, we point out a relation between QHM and extensions by short
exact sequences.

Wed, 25 Nov 2015
16:00
C1

Expanders and actions on measure spaces

Federico Vigolo
(Oxford)
Abstract

A family of expanders is a sequence of finite graphs which are both sparse and highly connected. Firstly defined in the 80s, they had huge applications in applied maths and computer science. Moreover, it soon turned out that they also had deep implications in pure maths. In this talk I will introduce the expander graphs and I will illustrate a way to construct them by approximating actions of groups on probability spaces.

Mon, 30 Nov 2015

16:00 - 17:00
C2

TBA

Simon Rydin Myerson
(Oxford)
Thu, 22 Oct 2015
11:00
C5

Algebraic spaces and Zariski geometries.

Alfonso Guido Ruiz
(Oxford)
Abstract

I will explain how algebraic spaces can be presented as Zariski geometries and prove some classical facts about algebraic spaces using the theory of Zariski geometries.

Mon, 23 Nov 2015

16:00 - 17:00
C2

Reduction Types of Abelian Varieties

Alexander Betts
(Oxford)
Abstract

Much of the arithmetic behaviour of an elliptic curve can be understood by examining its mod p reduction at some prime p. In this talk, we will aim to explain some of the ways we can define the mod p reduction, and the classifications of which reduction types occur.

Topics to be covered include the classical reduction types (good/multiplicative/additive), the Kodaira-Neron reduction types that refine them, and the Raynaud parametrisation of a semistable abelian variety. Time permitting, we may also discuss joint work with Vladimir Dokchitser classifying the semistable reduction types of 2-dimensional abelian varieties.

Mon, 16 Nov 2015

16:00 - 17:00
C2

IP sets, recurrence, and polynomials

Jakub Konieczny
(Oxford)
Abstract

I will discuss the many appearances of the class of IP sets in classical theorems of combinatorial number theory and ergodic theory. Our point of departure will be the celebrated theorem of Hindman on partition regularity of IP sets, which is crucial for the introduction of IP-limits. We then discuss how existence of certain IP-limits translates into recurrence statements, which in turn give rise to results in number theory via the Furstenberg correspondence principle. Throughout the talk, the methods of ergodic theory will play an important role - however, no prior familiarity with them is required.

Mon, 09 Nov 2015

16:00 - 17:00
C2

Characterising the Integers in the Rationals

Philip Dittmann
(Oxford)
Abstract

Starting from Hilbert's 10th problem, I will explain how to characterise the set of integers by non-solubility of a set of polynomial equations and discuss related challenges. The methods needed are almost entirely elementary; ingredients from algebraic number theory will be explained as we go along. No knowledge of first-order logic is necessary.

Wed, 21 Oct 2015

11:00 - 12:30
N3.12

Some Theorems of the Greeks

Gareth Wilkes
(Oxford)
Abstract

I will give a historical overview of some of the theorems proved by the
Ancient Greeks, which are now taken for granted but were, and are,
landmarks in the history of mathematics. Particular attention will be
given to the calculation of areas, including theorems of Hippocrates,
Euclid and Archimedes.

Wed, 11 Nov 2015
16:00
C1

The Flat Closing Conjecture

Robert Kropholler
(Oxford)
Abstract

I will discuss a notoriously hard problem in group theory known as the flat closing conjecture. This states that a group with a finite classifying space is either hyperbolic or contains a Baumslag-Solitar Subgroup. I will give some strategies to try and create a counterexample to this conjecture. 

Subscribe to Oxford