Tue, 12 Mar 2013
14:30
Gibson 1st Floor SR

Twistor Diagrams

Andrew Hodges
(Oxford)
Mon, 04 Mar 2013

16:00 - 17:00
SR1

A primer on Burgess bounds

Lillian Pierce
(Oxford)
Abstract

We'll present a proof of the basic Burgess bound for short character sums, following the simplified presentation of Gallagher and Montgomery.

Tue, 26 Feb 2013
17:00
L2

Relatively hyperbolic groups, mapping class groups and random walks

Alessandro Sisto
(Oxford)
Abstract

I will discuss similarities and differences between the geometry of
relatively hyperbolic groups and that of mapping class groups.
I will then discuss results about random walks on such groups that can
be proven using their common geometric features, namely the facts that
generic elements of (non-trivial) relatively hyperbolic groups are
hyperbolic, generic elements in mapping class groups are pseudo-Anosovs
and random paths of length $n$ stay $O(\log(n))$-close to geodesics in
(non-trivial) relatively hyperbolic groups and
$O(\sqrt{n}\log(n))$-close to geodesics in mapping class groups.

Mon, 25 Feb 2013

15:45 - 16:45
L3

The complexity of group presentations, manifolds, and the Andrews-Curtis conjecture

Martin Bridson
(Oxford)
Abstract
Many natural problems concerning the geometry and topology of manifolds are intimately connected with the nature of presentations for the fundamental groups of the manifolds. I shall illustrate this theme with various specific results, then focus on balanced presentations. I'll explain the (open) Andrews-Curtis conjecture and it's relation to the smooth 4-dimensional Poincare conjecture, and I'll present a construction that gives (huge) lower bounds on how hard it is to distinguish a homology 4-sphere from a genuine sphere.

Thu, 21 Feb 2013
11:00
SR1

"Small rigid subsets of the reals"

Will Brian
(Oxford)
Abstract

A topological space is called rigid if its only autohomeomorphism is the identity map. Using the Axiom of Choice it is easy to construct rigid subsets of the real line R, but sets constructed in this way always have size continuum. I will explore the question of whether it is possible to have rigid subsets of R that are small, meaning that their cardinality is smaller than that of the continuum. On the one hand, we will see that forcing can be used to produce models of ZFC in which such small rigid sets abound. On the other hand, I will introduce a combinatorial axiom that can be used to show the consistency with ZFC of the statement "CH fails but every rigid subset of R has size continuum". Only a working knowledge of basic set theory (roughly what one might remember from C1.2b) and topology will be assumed.

Mon, 11 Feb 2013

16:00 - 17:00
SR1

TBC

Netan Dogra
(Oxford)
Mon, 25 Feb 2013

12:00 - 13:00
L3

Fenchel-Nielsen coordinates from spectral networks

Lotte Hollands
(Oxford)
Abstract
Fenchel-Nielsen coordinates play a central role in constructing partition functions for theories of class S with gauge group SU(2). Having an analogue of these coordinates for higher rank gauge groups is a first step in finding partition functions for strongly coupled gauge theories of the Minahan-Nemeschansky type. We find such a generalization through the formalism of spectral networks and the non-abelianization map, that was originally introduced by Gaiotto, Moore and Neitzke to find a better understanding of BPS states in the theories of class S. This is joint work with Andy Neitzke.
Subscribe to Oxford