A primer on Burgess bounds
Abstract
We'll present a proof of the basic Burgess bound for short character sums, following the simplified presentation of Gallagher and Montgomery.
17:00
Relatively hyperbolic groups, mapping class groups and random walks
Abstract
I will discuss similarities and differences between the geometry of
relatively hyperbolic groups and that of mapping class groups.
I will then discuss results about random walks on such groups that can
be proven using their common geometric features, namely the facts that
generic elements of (non-trivial) relatively hyperbolic groups are
hyperbolic, generic elements in mapping class groups are pseudo-Anosovs
and random paths of length $n$ stay $O(\log(n))$-close to geodesics in
(non-trivial) relatively hyperbolic groups and
$O(\sqrt{n}\log(n))$-close to geodesics in mapping class groups.
The complexity of group presentations, manifolds, and the Andrews-Curtis conjecture
Abstract
11:00
"Small rigid subsets of the reals"
Abstract
A topological space is called rigid if its only autohomeomorphism is the identity map. Using the Axiom of Choice it is easy to construct rigid subsets of the real line R, but sets constructed in this way always have size continuum. I will explore the question of whether it is possible to have rigid subsets of R that are small, meaning that their cardinality is smaller than that of the continuum. On the one hand, we will see that forcing can be used to produce models of ZFC in which such small rigid sets abound. On the other hand, I will introduce a combinatorial axiom that can be used to show the consistency with ZFC of the statement "CH fails but every rigid subset of R has size continuum". Only a working knowledge of basic set theory (roughly what one might remember from C1.2b) and topology will be assumed.