Mon, 22 Oct 2012

15:45 - 16:45
L3

Matrix group actions on CAT(0) spaces and manifolds

Shengkui Ye
(Oxford)
Abstract

I will talk about the fixed-point properties of matrix groups acting CAT(0) paces, spheres and acyclic manifolds. The matrix groups include general linear groups, sympletic groups, orthogonal groups and classical unitary groups over general rings. We will show that for lower dimensional CAT(0) spaces, the group action of a matrix group always has a global fixed point and that for lower dimensional spheres and acyclic manifolds, a group action by homeomorphisms is always trivial. These results give generalizations of results of Farb concerning Chevalley groups over commutative rings and those of Bridson-Vogtmann, Parwani and Zimmermann concerning the special linear groups SL_{n}(Z) and symplectic groups Sp_{2n}(Z).

Thu, 23 May 2013

16:00 - 17:00
DH 1st floor SR

On contact line dynamics with mass transfer

Jim Oliver
(Oxford)
Abstract

We investigate the effect of mass transfer on the evolution of a thin two-dimensional partially wetting drop. While the effects of viscous dissipation, capillarity, slip and uniform mass transfer are taken into account, the effects of inter alia gravity, surface tension gradients, vapour transport and heat transport are neglected in favour of mathematical tractability. Our matched asymptotic analysis reveals that the leading-order outer formulation and contact-line law that is selected in the small-slip limit depends delicately on both the sign and size of the mass transfer flux. We analyse the resulting evolution of the drop and report good agreement with numerical simulations.

Thu, 07 Feb 2013

16:00 - 17:00
DH 1st floor SR

Fluid injection beneath an elastic lid : sixth-order thin-film problems

Ian Hewitt
(Oxford)
Abstract

I discuss models for the planar spreading of a viscous fluid between an elastic lid and an underlying rigid plane. These have application to the growth of magmatic intrusions, as well as to other industrial and biological processes; simple experiments of an inflated blister will be used for motivation. The height of the fluid layer is described by a sixth order non-linear diffusion equation, analogous to the fourth order equation that describes surface tension driven spreading. The dynamics depend sensitively on the conditions at the contact line, where the sheet is lifted from the substrate and where some form of regularization must be applied to the model. I will explore solutions with a pre-wetted film or a constant-pressure fluid lag, for flat and inclined planes, and compare with the analogous surface tension problems.

Mon, 12 Nov 2012

12:00 - 13:00
L3

Scattering Amplitudes in Three Dimensions

Arthur Lipstein
(Oxford)
Abstract
I will describe scattering amplitudes of 3d Yang-Mills and Chern-Simons theories and what they may imply about string theory and M-theory.
Thu, 02 May 2013

16:00 - 17:00
DH 1st floor SR

Consequences of Viscous Anisotropy in Partially Molten Rocks

Richard Katz
(Oxford)
Abstract

In partially molten regions of Earth, rock and magma coexist as a two-phase aggregate in which the solid grains of rock form a viscously deformable matrix. Liquid magma resides within the permeable network of pores between grains. Deviatoric stress causes the distribution of contact area between solid grains to become anisotropic; this causes anisotropy of the matrix viscosity. The anisotropic viscosity tensor couples shear and volumetric components of stress/strain rate. This coupling, acting over a gradient in shear stress, causes segregation of liquid and solid. Liquid typically migrates toward higher shear stress, but under specific conditions, the opposite can occur. Furthermore, in a two-phase aggregate with a porosity-weakening viscosity, matrix shear causes porosity perturbations to grow into a banded structure. We show that viscous anisotropy reduces the angle between these emergent high-porosity features and the shear plane. This is consistent with lab experiments.

Mon, 15 Oct 2012

16:00 - 17:00
SR1

Simultaneous prime values of pairs of quadratic forms

Lillian Pierce
(Oxford)
Abstract

Given a form $F(x)$, the circle method is frequently used to provide an asymptotic for the number of representations of a fixed integer $N$ by $F(x)$. However, it can also be used to prove results of a different flavor, such as showing that almost every number (in a certain sense) has at least one representation by $F(x)$. In joint work with Roger Heath-Brown, we have recently considered a 2-dimensional version of such a problem. Given two quadratic forms $Q_1$ and $Q_2$, we ask whether almost every integer (in a certain sense) is simultaneously represented by $Q_1$ and $Q_2$. Under a modest geometric assumption, we are able to prove such a result if the forms are in $5$ variables or more. In particular, we show that any two such quadratic forms must simultaneously attain prime values infinitely often. In this seminar, we will review the circle method, introduce the idea of a Kloosterman refinement, and investigate how such "almost all" results may be proved.


Mon, 29 Oct 2012

12:00 - 13:00
L3

String compactifications on SU(3) structure manifolds

Magdalena Larfors
(Oxford)
Abstract

In the absence of background fluxes and sources, the compactification of string theories on Calabi-Yau threefolds leads to supersymmetric solutions.Turning on fluxes, e.g. to lift the moduli of the compactification, generically forces the geometry to break the Calabi-Yau conditions, and to satisfy, instead, the weaker condition of reduced structure. In this talk I will discuss manifolds with SU(3) structure, and their relevance for heterotic string compacitications. I will focus on domain wall solutions and how explicit example geometries can be constructed.

Mon, 15 Oct 2012

12:00 - 13:00

The Hodge Plot of Toric Calabi-Yau Threefolds. Webs of K3 Fibrations from Polyhedra with Interchangeable Parts

Andrei Constantin
(Oxford)
Abstract
Even a cursory inspection of the Hodge plot associated with Calabi-Yau threefolds that are hypersurfaces in toric varieties reveals striking structures. These patterns correspond to webs of elliptic-K3 fibrations whose mirror images are also elliptic-K3 fibrations. Such manifolds arise from reflexive polytopes that can be cut into two parts along slices corresponding to the K3 fibers. Any two half-polytopes over a given slice can be combined into a reflexive polytope. This fact, together with a remarkable relation on the additivity of Hodge numbers, explains much of the structure of the observed patterns.
Subscribe to Oxford