Local limit theorems for giant components
Abstract
In an Erdős--R\'enyi random graph above the phase transition, i.e.,
where there is a giant component, the size of (number of vertices in)
this giant component is asymptotically normally distributed, in that
its centred and scaled size converges to a normal distribution. This
statement does not tell us much about the probability of the giant
component having exactly a certain size. In joint work with B\'ela
Bollob\'as we prove a `local limit theorem' answering this question
for hypergraphs; the graph case was settled by Luczak and Łuczak.
The proof is based on a `smoothing' technique, deducing the local
limit result from the (much easier) `global' central limit theorem.
Shifted Generic Cohomology
Abstract
In 1977, Cline Parshall, Scott and van der Kallen wrote a seminal paper `Rational and generic cohomology' which exhibited a connection between the cohomology for algebraic groups and the cohomology for finite groups of Lie type, showing that in many cases one can conclude that there is an isomorphism of cohomology through restriction from the algebraic to the finite group.
One unfortunate problem with their result is that there remain infinitely many modules for which their theory---for good reason---tells us nothing. The main result of this talk (recent work with Parshall and Scott) is to show that almost all the time, one can manipulate the simple modules for finite groups of Lie type in such a way as to recover an isomorphism of its cohomology with that of the algebraic group.
11:00
Finding Short Conjugators in Wreath Products and Free Solvable Groups
Abstract
The question of estimating the length of short conjugators in between
elements in a group could be described as an effective version of the
conjugacy problem. Given a finitely generated group $G$ with word metric
$d$, one can ask whether there is a function $f$ such that two elements
$u,v$ in $G$ are conjugate if and only if there exists a conjugator $g$ such
that $d(1,g) \leq f(d(1,u)+d(1,v))$. We investigate this problem in free
solvable groups, showing that f may be cubic. To do this we use the Magnus
embedding, which allows us to see a free solvable group as a subgroup of a
particular wreath product. This makes it helpful to understand conjugacy
length in wreath products as well as metric properties of the Magnus
embedding.
A polynomial upper bound on Reidemeister moves
Abstract
Consider a diagram of the unknot with c crossings. There is a
sequence of Reidemeister
moves taking this to the trivial diagram. But how many moves are required?
In my talk, I will give
an overview of my recent proof that there is there is an upper bound on the
number of moves, which
is a polynomial function of c.