Tue, 08 Nov 2011
17:00
L2

"Biaffine geometries, amalgams and group recognition"

Dr Justin McInroy
(Oxford)
Abstract

A polar space $\Pi$ is a geometry whose elements are the totally isotropic subspaces of a vector space $V$ with respect to either an alternating, Hermitian, or quadratic form. We may form a new geometry $\Gamma$ by removing all elements contained in either a hyperplane $F$ of $\Pi$, or a hyperplane $H$ of the dual $\Pi^*$. This is a \emph{biaffine polar space}.

We will discuss two specific examples, one with automorphism group $q^6:SU_3(q)$ and the other $G_2(q)$. By considering the stabilisers of a maximal flag, we get an amalgam, or "glueing", of groups for each example. However, the two examples have "similar" amalgams - this leads to a group recognition result for their automorphism groups.

Tue, 11 Oct 2011
17:00
L2

Symplectic Representations of Finite Groups

Prof M. J. Collins
(Oxford)
Abstract

I shall discuss recent work in which bounds are obtained, generalising/specialising earlier work for general linear groups

Tue, 21 Jun 2011

14:00 - 15:00
L1

An introduction to integer factorization

Jan Tuitman
(Oxford)
Abstract

(Note change in time and location)

The purpose of this talk is to give an introduction to the theory and

practice of integer factorization. More precisely, I plan to talk about the

p-1 method, the elliptic curve method, the quadratic sieve, and if time

permits the number field sieve.

Subscribe to Oxford