Mon, 24 Jan 2011

12:00 - 13:00
L3

Scattering Amplitudes and Holomorphic Linking in Twistor Space

Mathew Bullimore
(Oxford)
Abstract
Recently, there has been exciting progress in scattering amplitudes in supersymmetric gauge theories, one aspect of which is the remarkable duality between amplitudes and Wilson loops. I will explain how the complete planar S-matrix of N=4 super Yang-Mills theory is encoded in the complex analogue of a Wilson loop in holomorphic Chern-Simons theory on twistor space. The dynamics of the theory are encoded in loop equations, which describe deformations of the Wilson Loop and provide new insight into the nature of the amplitude-Wilson loop duality. The loop equations themselves yield powerful recursive methods for scattering amplitudes which are revealed as holomorphic skein relations by interpreting the Wilson loop as the complex analogue of a knot invariant. The talk will be based on the preprint arXiv:1101.1329.
Mon, 31 Jan 2011

16:00 - 17:00
SR1

Rational connectivity and points on varieties

Frank Gounelas
(Oxford)
Abstract

The main aim of this talk will be to present a proof of the Tsen-Lang theorem on the existence of points on complete intersections and sketch a proof of the Grabber-Harris-Starr theorem giving the existence of a section to a fibration of a rationally connected variety over a curve. Time permitting, recent work of de Jong and Starr on rationally simply connected varieties will be discussed with applications to the number theory of hypersurfaces.

Mon, 17 Jan 2011

16:00 - 17:00
SR1

Sums of k-th powers and operators in harmonic analysis

Lillian Pierce
(Oxford)
Abstract

An old conjecture of Hardy and Littlewood posits that on average, the number of representations of a positive integer N as a sum of k, k-th powers is "very small." Recently, it has been observed that this conjecture is closely related to properties of a discrete fractional integral operator in harmonic analysis. This talk will give a basic introduction to the two key problems, describe the  correspondence between them, and show how number theoretic methods, in particular the circle method and mean values of Weyl sums, can be used to say something new in abstract harmonic analysis.

Subscribe to Oxford