Mon, 29 Nov 2010

12:00 - 13:00
L3

Generalized Geometry in AdS/CFT and Volume Minimization

Maxime Gabella
(Oxford)
Abstract
Motivated by the study of general supersymmetric AdS_5 solutions of type IIB supergravity with fluxes, I will define a notion of "generalized Sasaki-Einstein geometry," characterized by a differential system for a triple of symplectic forms in 4d. I will then show that the minimization of the contact volume over a space of generalized Sasakian structures determines the Reeb vector field for such a solution. This is the geometric counterpart of a-maximization in superconformal field theory. This variational procedure will be put to good use by computing BPS quantities for a predicted infinite family of solutions dual to mass-deformed generalized conifolds.
Mon, 15 Nov 2010

12:00 - 13:00
L3

The Large Hadron Collider – the story so far

Alan Barr
(Oxford)
Abstract
String theory has a vested interest in a particular S1xS1 object found just outside Geneva. The machine in question has been colliding protons at high energy since March this year, and by now the ATLAS and CMS experiments have clocked up more than 10^12 high-energy events. In this seminar I present the status of the accelerator and detectors, highlight the major physics results obtained so far, and discuss the extent to which information from the LHC can inform us about TeV-scale theory.
Mon, 01 Nov 2010

12:00 - 13:00
L3

New three-generation models from the heterotic standard embedding

Rhys Davies
(Oxford)
Abstract

Recently, two new Calabi-Yau threefolds have been discovered which have small Hodge numbers, and give rise to three chiral generations of fermions via the so-called 'standard embedding' compactification of the heterotic string.
In this talk I will describe how to deform the standard embedding on these manifolds in order to achieve the correct gauge group.  I will also describe how to calculate the resulting spectrum and interactions, which is still work in progress.

Subscribe to Oxford