15:45
Factorization homology of braided tensor categories
Abstract
Factorization homology is an arguably abstract formalism which produces
well-behaved topological invariants out of certain "higher algebraic"
structures. In this talk, I'll explain how this formalism can be made
fairly concrete in the case where this input algebraic structure is a
braided tensor category. If the category at hand is semi-simple, this in
fact essentially recovers skein categories and skein algebras. I'll
present various applications of this formalism to quantum topology and
representation theory.
11:30
Cardinal invariants and model-theoretic tree properties
Abstract
In Classification Theory, Shelah defined several cardinal invariants of a complete theory which detect the presence of certain trees among the definable sets, which in turn quantify the complexity of forking. In later model-theoretic developments, local versions of these invariants were recognized as marking important dividing lines - e.g. simplicity and NTP2. Around these dividing lines, a dichotomy theorem of Shelah states that a theory has the tree property if and only if it is witnessed in one of two extremal forms--the tree property of the first or second kind--and it was asked if there is a 'quantitative' analogue of this dichotomy in the form of a certain equation among these invariants. We will describe these model-theoretic invariants and explain why the quantitative version of the dichotomy fails, via a construction that relies upon some unexpected tools from combinatorial set theory.
Recent progress in 2-dimensional quantum Yang-Mills theory
Abstract
Quantum Yang-Mills theory is an important part of the Standard model built by physicists to describe elementary particles and their interactions. One approach to the mathematical substance of this theory consists in constructing a probability measure on an infinite-dimensional space of connections on a principal bundle over space-time. However, in the physically realistic 4-dimensional situation, the construction of this measure is still an open mathematical problem. The subject of this talk will be the physically less realistic 2-dimensional situation, in which the construction of the measure is possible, and fairly well understood.
In probabilistic terms, the 2-dimensional Yang-Mills measure is the distribution of a stochastic process with values in a compact Lie group (for example the unitary group U(N)) indexed by the set of continuous closed curves with finite length on a compact surface (for example a disk, a sphere or a torus) on which one can measure areas. It can be seen as a Brownian motion (or a Brownian bridge) on the chosen compact Lie group indexed by closed curves, the role of time being played in a sense by area.
In this talk, I will describe the physical context in which the Yang-Mills measure is constructed, and describe it without assuming any prior familiarity with the subject. I will then present a set of results obtained in the last few years by Antoine Dahlqvist, Bruce Driver, Franck Gabriel, Brian Hall, Todd Kemp, James Norris and myself concerning the limit as N tends to infinity of the Yang-Mills measure constructed with the unitary group U(N).
Lévy forward price approach for multiple yield curves in presence of persistently low and negative interest rates
Abstract
In this talk we present a framework for discretely compounding
interest rates which is based on the forward price process approach.
This approach has a number of advantages, in particular in the current
market environment. Compared to the classical Libor market models, it
allows in a natural way for negative interest rates and has superb
calibration properties even in the presence of persistently low rates.
Moreover, the measure changes along the tenor structure are simplified
significantly. This property makes it an excellent base for a
post-crisis multiple curve setup. Two variants for multiple curve
constructions will be discussed.
As driving processes we use time-inhomogeneous Lévy processes, which
lead to explicit valuation formulas for various interest rate products
using well-known Fourier transform techniques. Based on these formulas
we present calibration results for the two model variants using market
data for caps with Bachelier implied volatilities.
Construction of a macroscopic model of phase-transformation for the modeling of superelastic Shape Memory Alloys
Abstract
Recent directions in derived geometry
Abstract
We will give an idea of derived algebraic geometry and sketch a number of more or less recent directions, including derived symplectic geometry, derived Poisson structures, quantizations of moduli spaces, derived analytic geometry, derived logarithmic geometry and derived quadratic structures.
Valued difference fields and NTP2
Abstract
(Joint work with Artem Chernikov.) In the talk, we will first recall some basic results on valued difference fields, both from an algebraic and from a model-theoretic point of view. In particular, we will give a description, due to Hrushovski, of the theory VFA of the non-standard Frobenius acting on an algebraically closed valued field of residue characteristic 0, as well as an Ax-Kochen-Ershov type result for certain valued difference fields which was proved by Durhan. We will then present a recent work where it is shown that VFA does not have the tree property of the second kind (i.e., is NTP2); more generally, in the context of the Ax-Kochen-Ershov principle mentioned above, the valued difference field is NTP2 iff both the residue difference field and the value difference group are NTP2. The property NTP2 had already been introduced by Shelah in 1980, but only recently it has been shown to provide a fruitful ‘tameness’ assumption, e.g. when dealing with independence notions in unstable NIP theories (work of Chernikov-Kaplan).
(HoRSe seminar) Defining the refined vertex using equivariant K-theory I
Abstract
String theory derives the features of the quantum field theory describing the gauge interactions between the elementary particles in four spacetime dimensions from the physics of strings propagating on the internal manifold, e.g. a Calabi-Yau threefold. A simplified version of this correspondence relates the SU(2)-equivariant generalization of the Donaldson theory (and its further generalizations involving the non-abelian monopole equations) to the Gromov-Witten (GW) theory of the so-called local Calabi-Yau threefolds, for the SU(2) subgroup of the rotation symmetry group SO(4). In recent years the GW theory was related to the Donaldson-Thomas (DT) theory enumerating the ideal sheaves of curves and points. On the toric local Calabi-Yau manifolds the latter theory is studied using localization, producing the so-called topological vertex formalism (which was originally based on more sophisticated open-closed topological string dualities).
In order to accomodate the full SO(4)-equivariant version of the four dimensional Donaldson theory, the so-called "refined topological vertex" was proposed. Unlike that of the ordinary topological vertex, its relation to the DT theory remained unclear.
In these talks, based on joint work with Andrei Okounkov, this gap will be partially filled by showing that the equivariant K-theoretic version of the DT theory reproduces both the SO(4)-equivariant Donaldson theory in four dimensions, and the refined topological vertex formalism, for all toric Calabi-Yau's admitting the latter.