Wed, 05 Jun 2013

17:00 - 18:00
Gibson 1st Floor SR

Decay for fields outside black holes

Pieter Blue
(University of Edinburgh)
Abstract

The Einstein equation from general relativity is a

quasilinear hyperbolic, geometric PDE (when viewed in an appropriate

coordinate system) for a manifold. A particularly interesting set of

known, exact solutions describe black holes. The wave and Maxwell

equations on these manifolds are models for perturbations of the known

solutions and have attracted a significant amount of attention in the

last decade. Key estimates are conservation of energy and Morawetz (or

integrated local energy) estimates. These can be proved using both

Fourier analytic methods and more geometric methods. The main focus of

the talk will be on decay estimates for solutions of the Maxwell

equation outside a slowly rotating Kerr black hole.

Mon, 11 Mar 2013

14:15 - 15:15
Oxford-Man Institute

Pathwise approximation of SDE solutions using coupling

SANDIE DAVIE
(University of Edinburgh)
Abstract

The standard Taylor series approach to the higher-order approximation of vector SDEs requires simulation of iterated stochastic integrals, which is difficult. The talk will describe an approach using methods from optimal transport theory which avoid this difficulty in the case of non-degenerate diffusions, for which one can attain arbitrarily high order pathwise approximation in the Vaserstein 2-metric, using easily generated random variables.

Mon, 23 Apr 2012

14:15 - 15:15
Oxford-Man Institute

Stochastic Diffusions for Sampling Gibbs Measures Ben Leimkuhler, University of Edinburgh

BEN LEIMKUHLER
(University of Edinburgh)
Abstract

 

I will discuss properties of stochastic differential equations and numerical algorithms for sampling Gibbs (i.e smooth) measures. Methods such as Langevin dynamics are reliable and well-studied performers for molecular sampling.   I will show that, when the objective of simulation is sampling of the configurational distribution, it is possible to obtain a superconvergence result (an unexpected increase in order of accuracy) for the invariant distribution.   I will also describe an application of thermostats to the Hamiltonian vortex method in which the energetic interactions with a bath of weak vortices are treated as thermal fluctuations

Fri, 01 Jun 2012

14:30 - 15:30
DH 3rd floor SR

Global Optimization of Lipschitz Continuous Function with Applications to Reservoir Simulation

Dr Jari Fowkes
(University of Edinburgh)
Abstract

This talk will consist of two parts. In the first part we will present a motivating application from oil reservoir simulation, namely finding the location and trajectory of an oil producing well which maximises oil production. We will show how such a problem can be tackled through the use of radial basis function (RBF) approximation (also known as Kriging or Gaussian process regression) and a branch and bound global optimization algorithm.

In the second part of the talk we will show how one can improve the branch and bound algorithm through the use of Lipschitz continuity of the RBF approximation. This leads to an entirely new global optimization algorithm for twice differentiable functions with Lipschitz continuous Hessian. The algorithm makes use of recent cubic regularisation techniques from local optimization to obtain the necessary bounds within the branch and bound algorithm.

Thu, 02 Feb 2012

14:00 - 15:00
Gibson Grd floor SR

Optimal Newton-type methods for nonconvex smooth optimization

Dr Coralia Cartis
(University of Edinburgh)
Abstract

We show that the steepest-descent and Newton's methods for unconstrained nonconvex optimization

under standard assumptions may both require a number of iterations and function evaluations

arbitrarily close to the steepest-descent's global worst-case complexity bound. This implies that

the latter upper bound is essentially tight for steepest descent and that Newton's method may be as

slow as the steepest-descent method in the worst case. Then the cubic regularization of Newton's

method (Griewank (1981), Nesterov & Polyak (2006)) is considered and extended to large-scale

problems, while preserving the same order of its improved worst-case complexity (by comparison to

that of steepest-descent); this improved worst-case bound is also shown to be tight. We further

show that the cubic regularization approach is, in fact, optimal from a worst-case complexity point

of view amongst a wide class of second-order methods. The worst-case problem-evaluation complexity

of constrained optimization will also be discussed. This is joint work with Nick Gould (Rutherford

Appleton Laboratory, UK) and Philippe Toint (University of Namur, Belgium).

Thu, 26 Jan 2012

14:00 - 15:00
Gibson Grd floor SR

Interior Point warmstarts and stochastic programming

Dr Andreas Grothey
(University of Edinburgh)
Abstract

We present progress on an Interior Point based multi-step solution approach for stochastic programming problems. Our approach works with a series of scenario trees that can be seen as successively more accurate discretizations of an underlying probability distribution and employs IPM warmstarts to "lift" approximate solutions from one tree to the next larger tree.

Mon, 28 Nov 2011

12:00 - 13:00
L3

Emergent IR CFTs in black hole physics

Joan Simon
(University of Edinburgh)
Abstract

I will discuss the dynamical emergence of IR conformal invariance describing the low energy excitations of near-extremal R-charged global AdS${}_5$ black holes. To keep some non-trivial dynamics in the sector of ${\cal N}=4$ SYM captured by the near horizon limits describing these IR physics, we are lead to study large N limits in the UV theory involving near vanishing horizon black holes. I will consider both near-BPS and non-BPS regimes, emphasising the differences in the local AdS${}_3$ throats emerging in both cases. I will compare these results with the predictions obtained by Kerr/CFT, obtaining a natural quantisation for the central charge of the near-BPS emergent IR CFT describing the open strings stretched between giant gravitons.

Thu, 13 Oct 2011

14:00 - 15:00
Gibson Grd floor SR

Efficiency of serial and parallel block-coordinate descent methods for minimizing composite functions

Dr Peter Richtárik
(University of Edinburgh)
Abstract

We develop a randomized block-coordinate descent method for minimizing the sum of a smooth and a simple nonsmooth block-separable convex function and prove that it obtains an $\epsilon$-accurate solution with probability at least $1-\rho$ in at most $O[(2n/\epsilon)\log(1/\rho)]$ iterations, where $n$ is the dimension of the problem. For strongly convex functions the method converges linearly. This extends recent results of Nesterov [Efficiency of coordinate descent methods on huge-scale optimization problems, CORE Discussion Paper \#2010/2], which cover the smooth case, to composite minimization, while at the same time improving the complexity by the factor of 4 and removing $\epsilon$ from the logarithm. More importantly, in contrast with the aforementioned work in which the authors achieve the results by applying their method to a regularized version of the objective function with an unknown scaling factor, we show that this is not necessary, thus achieving true iteration complexity bounds. In the smooth case we also allow for arbitrary probability vectors and non-Euclidean norms. Time permitting, we will also mention new iteration complexity results for a parallel version of the method.

\\

\\

In the second part of the talk we demonstrate numerically that the algorithm is able to solve huge-scale $\ell_1$-regularized support vector machine and least squares problems with billion variables. Finally, we present preliminary computational results with a GPU-accelerated parallel version of the method, on truss topology design instances, achieving speedups of up to two orders of magnitude when compared to a single-core implementation in C.

\\

\\

References:

\\

P. Richtarik and M. Takac, Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function, 2011; http://arxiv.org/abs/1107.2848

\\

P. Richtarik and M. Takac, Efficient serial and parallel coordinate descent methods for huge-scale truss topology design, 2011; http://www.optimization-online.org/DB_HTML/2011/08/3118.html

\\

P. Richtarik and M. Takac, Efficiency of randomized coordinate descent methods on minimization problems with a composite objective function, Proceedings of SPARS11

Thu, 20 Oct 2005

14:00 - 15:00
Comlab

From sparsity to block-sparsity: direct solution of linear systems of dimension 10^9

Prof Jacek Gondzio
(University of Edinburgh)
Abstract

We discuss a method for solving very large structured symmetric indefinite equation systems arising in optimization with interior point methods.

Many real-life economic models involve system dynamics, spatial distribution or uncertainty and lead to large-scale optimization problems. Such problems usually have a hidden structure: they are constructed by replication of some small generic block. The linear algebra subproblems which arise in optimization algorithms for such problems involve matrices which are not only sparse, but they additionally display a block-structure with many smaller blocks sparsely distributed in the large matrix.

We have developed a structure-exploiting parallel interior point solver for optimization problems. Its design uses object-orientated programming techniques. The progress OOPS (Object-Orientated Parallel Solver: http://www.maths.ed.ac.uk/~gondzio/parallel/solver.html) on a number of different computing platforms and achieves scalability on a number of different computing platforms. We illustrate its performance on a collection of problems with sizes reaching 109 variables arising from asset liability management and portfolio optimization.

This is a joint work with Andreas Grothey.

Subscribe to University of Edinburgh