Tue, 07 Jun 2022
16:00
C1

C*-algebras and multidimensional dynamics, ideal structure

Kevin Brix
(University of Glasgow)
Abstract

 I will discuss ongoing work with Toke Carlsen and Aidan Sims on ideal structure of C*-algebras of commuting local homeomorphisms. This is one aspect of a general attempt to bridge C*-algebras with multidimensional (symbolic) dynamics.

Tue, 08 Mar 2022

16:00 - 17:00
C1

C*-simplicity for groupoids.

Sam Kim
(University of Glasgow)
Abstract

A Hausdorff and etale groupoid is said to be C*-simple if its reduced groupoid C*-algebra is simple. Work on C*-simplicity goes back to the work of Kalantar and Kennedy in 2014, who classified the C*-simplicity of discrete groups by associating to the group a dynamical system. Since then, the study of C*-simplicity has received interest from group theorists and operator algebraists alike. More recently, the works of Kawabe and Borys demonstrate that the groupoid case may be tractible to such dynamical characterizations. In this talk, we present the dynamical characterization of when a groupoid is C*-simple and work out some basic examples. This is joint work with Xin Li, Matt Kennedy, Sven Raum, and Dan Ursu. No previous knowledge of groupoids will be assumed.

Mon, 14 Jun 2021

15:45 - 16:45
Virtual

The slope of a link computed via C-complexes

Ana Lecuona
(University of Glasgow)
Abstract

Together with Alex Degtyarev and Vincent Florence we introduced a new link invariant, called slope, of a colored link in an integral homology sphere. In this talk I will define the invariant, highlight some of its most interesting properties as well as its relationship to Conway polynomials and to the  Kojima–Yamasaki eta-function. The stress in this talk will be on our latest computational progress: a formula to calculate the slope from a C-complex.

Thu, 18 Feb 2021

16:00 - 16:45
Virtual

A duality theorem for non-unital operator systems

Sam Kim
(University of Glasgow)
Further Information

Part of UK virtual operator algebra seminar: https://sites.google.com/view/uk-operator-algebras-seminar/home

Abstract

The recent work on nc convex sets of Davidson, Kennedy, and Shamovich show that there is a rich interplay between the category of operator systems and the category of compact nc convex sets, leading to new insights even in the case of C*-algebras. The category of nc convex sets are a generalization of the usual notion of a compact convex set that provides meaningful connections between convex theoretic notions and notions in operator system theory. In this talk, we present a duality theorem for norm closed self-adjoint subspaces of B(H) that do not necessarily contain the unit. Using this duality, we will describe various C*-algebraic and operator system theoretic notions such as simplicity and subkernels in terms of their convex structure. This is joint work with Matthew Kennedy and Nicholas Manor.

Thu, 05 Nov 2020

16:45 - 17:30
Virtual

Semigroup C*-algebras of number-theoretic origin

Chris Bruce
(University of Glasgow)
Further Information

Part of UK virtual operator algebras seminar: https://sites.google.com/view/uk-operator-algebras-seminar/home

Abstract

I will give an introduction to semigroup C*-algebras of ax+b-semigroups over rings of algebraic integers in algebraic number fields, a class of C*-algebras that was introduced by Cuntz, Deninger, and Laca. After explaining the construction, I will briefly discuss the state-of-the-art for this example class: These C*-algebras are unital, separable, nuclear, strongly purely infinite, and have computable primitive ideal spaces. In many cases, e.g., for Galois extensions, they completely characterise the underlying algebraic number field.

Thu, 30 Apr 2020

16:45 - 17:30
Virtual

Extensions of C*-algebras

Christian Bonicke
(University of Glasgow)
Further Information

UK Virtual operator algebras seminar by zoom: https://sites.google.com/view/uk-operator-algebras-seminar/home

Abstract

Having its roots in classical operator theoretic questions, the theory of extensions of C*-algebras is now a powerful tool with applications in geometry and topology and of course within the theory of C*-algebras itself. In this talk I will give a gentle introduction to the topic highlighting some classical results and more recent applications and questions.

Thu, 16 Apr 2020

16:45 - 17:30

Introduction to non-commutative L_p-space

Runlian Xia
(University of Glasgow)
Further Information

This is a meeting of the UK virtual operator algebras seminar: see https://sites.google.com/view/uk-operator-algebras-seminar/home

Abstract

This talk will give an easy introduction to non-commutative L_p spaces associated with a tracial von Neumann algebra. Then I will focus on non-commutative L_p spaces associated to locally compact groups and talk about some interesting completely bounded multipliers on them.

Tue, 14 Jan 2020
16:00
C3

Structure theory for groupoid C*-algebras

Christian Bonicke
(University of Glasgow)
Abstract

C*-algebras constructed from topological groupoids allow us to study many interesting and a priori very different constructions
of C*-algebras in a common framework. Moreover, they are general enough to appear intrinsically in the theory. In particular, it was recently shown
by Xin Li that all C*-algebras falling within the scope of the classification program admit (twisted) groupoid models.
In this talk I will give a gentle introduction to this class of C*-algebras and discuss some of their structural properties, which appear in connection
with the classification program.
 

Tue, 15 Oct 2019

14:00 - 15:00
L6

Approximately counting and sampling small witnesses using a colourful decision oracle

Kitty Meeks
(University of Glasgow)
Abstract

Decision problems – those in which the goal is to return an answer of “YES" or “NO" – are at the heart of the theory of computational complexity, and remain the most studied problems in the theoretical algorithms community. However, in many real-world applications it is not enough just to decide whether the problem under consideration admits a solution: we often want to find all solutions, or at least count (either exactly or approximately) their  total number. It is clear that finding or counting all solutions is at least as computationally difficult as deciding whether there exists a single solution, and  indeed in many cases it is strictly harder (assuming P is not equal NP) even to count approximately the number of solutions than it is to decide whether there exists at least one.


In this talk I will discuss a restricted family of problems, in which we are interested in solutions of a given size: for example, solutions could be copies of a specific k-vertex graph H in a large host graph G, or more generally k-vertex subgraphs of G that have some specified property (e.g. k-vertex subgraphs that are connected). In this setting, although exact counting is strictly harder than decision (assuming standard assumptions in parameterised complexity), the methods typically used to separate approximate counting from decision break down. Indeed, I will demonstrate a method that, subject to certain additional assumptions, allows us to transform an efficient decision algorithm for a problem of this form into an approximate counting algorithm with essentially the same running time.

This is joint work with John Lapinskas (Bristol) and Holger Dell (ITU Copenhagen).

Thu, 07 Feb 2019

16:00 - 17:30
L3

Fracture dynamics in foam: Finite-size effects

Dr. Peter Stewart
(University of Glasgow)
Abstract

Injection of a gas into a gas/liquid foam is known to give rise to instability phenomena on a variety of time and length scales. Macroscopically, one observes a propagating gas-filled structure that can display properties of liquid finger propagation as well as of fracture in solids. Using a discrete model, which incorporates the underlying film instability as well as viscous resistance from the moving liquid structures, we describe brittle cleavage phenomena in line with experimental observations. We find that  the dimensions of the foam sample significantly affect the speed of the  cracks as well as the pressure necessary to sustain them: cracks in wider samples travel faster at a given driving stress, but are able to avoid arrest and maintain propagation at a lower pressure (the  velocity gap becomes smaller). The system thus becomes a study case for stress concentration and the transition between discrete and continuum systems in dynamical fracture; taking into account the finite dimensions of the system improves agreement with experiment.

Subscribe to University of Glasgow