The value of information flows in the stock market - joint with Hai Duong
Abstract
16:00
On dense subalgebras of the singular ideal in groupoid C*-algebras
Abstract
Groupoids provide a rich supply of C*-algebras, and there are many results describing the structure of these C*-algebras using properties of the underlying groupoid. For non-Hausdorff groupoids, less is known, largely due to the existence of 'singular' functions in the reduced C*-algebra. This talk will discuss two approaches to studying ideals in non-Hausdorff groupoid C*-algebras. The first uses Timmermann's Hausdorff cover to reduce certain problems to the setting of Hausdorff groupoids. The second will restrict to isotropy groups. For amenable second-countable étale groupoids, these techniques allow us to characterise when the ideal of singular functions has dense intersection with the underlying groupoid *-algebra. This is based on joint work with K. A. Brix, J. B. Hume, and X. Li, as well as upcoming work with J. B. Hume.
16:00
Finiteness properties of some automorphism groups of right-angled Artin groups
Abstract
Right-angled Artin groups (RAAGs) can be viewed as a generalisation of free groups. To what extent, then, do the techniques used to study automorphisms of free groups generalise to the setting of RAAGs? One significant advance in this direction is the construction of 'untwisted Outer space' for RAAGs, a generalisation of the influential Culler-Vogtmann Outer space for free groups. A consequence of this construction is an upper bound on the virtual cohomological dimension of the 'untwisted subgroup' of outer automorphisms of a RAAG. However, this bound is sometimes larger than one expects; I present work showing that, in fact, it can be arbitrarily so, by forming a new complex as a deformation retraction of the untwisted Outer space. In a different direction, another subgroup of interest is that consisting of symmetric automorphisms. Generalising work in the free groups setting from 1989, I present an Outer space for the symmetric automorphism group of a RAAG. A consequence of the proof is a strong finiteness property for many other subgroups of the outer automorphism group.
16:00
Positive representations of quantum groups
Abstract
Quantized universal enveloping algebras admit an intriguing class of (unbounded) Hilbert space representations obtained via their cluster structure. In these so-called positive representations the standard generators act by (essentially self-adjoint) positive operators.
The aim of this talk is to discuss some analytical questions arising in this context, and in particular to what extent these representations can be understood using the theory of locally compact quantum groups in the sense of Kustermans and Vaes. I will focus on the simplest case in rank 1, where many of the key features (and difficulties) are already visible. (Based on work in progress with Kenny De Commer, Gus Schrader and Alexander Shapiro).
Pressure-driven fracture in elastic continuum materials
Short Bio
Peter S. Stewart is a Professor of Applied Mathematics at the University of Glasgow. His research applies continuum mechanics to physiological and industrial problems. He previously held postdoctoral positions at the University of Oxford and Northwestern University, and earned his PhD from the University of Nottingham with a thesis on flows in flexible channels and airways. http://www.maths.gla.ac.uk/~pstewart
Abstract
16:00
Mordell–Weil groups of elliptic curves — beyond ranks
Abstract
If $E/\mathbb{Q}$ is an elliptic curve, and $F/\mathbb{Q}$ is a finite Galois extension, then $E(F)$ is not merely a finitely generated abelian group, but also a Galois module. If we fix a finite group $G$, and let $F$ vary over all $G$-extensions, then what can we say about the statistical behaviour of $E(F)$ as a $\mathbb{Z}[G]$-module? In this talk I will report on joint work with Adam Morgan, in which we investigate the simplest non-trivial special case of this very general question. Our work has surprising connections to questions about frequency of failure of the Hasse principle for genus 1 hyperelliptic curves, and to work of Heath-Brown on 2-Selmer group distributions in quadratic twist families.
14:00
Nakajima quiver varieties in dimension 4
Abstract
Nakajima quiver varieties form an important class of examples of conical symplectic singularities. For example, such varieties of dimension 2 are Kleinian singularities. Starting from this, I will describe a combinatorial approach to classifying the next case, affine quiver varieties of dimension 4. If time permits, I will try to say the implications we obtained and how can one compute the number of crepant symplectic resolutions of these varieties. This is a joint project with Samuel Lewis.
14:00
Minimal degenerations for quiver varieties
Abstract
For any symplectic singularity, one can consider the minimal degenerations between symplectic leaves - these are the relative singularities of a pair of adjacent leaves in the closure relation. I will describe a complete classification of these minimal degenerations for Nakajima quiver varieties. It provides an effective algorithm for computing the associated Hesse diagrams. In the physics literature, it is known that this Hasse diagram can be computed using quiver subtraction. Our results appear to recover this process. I will explain applications of our results to the question of normality of leaf closures in quiver varieties. The talk is based on joint work in progress with Travis Schedler.