Thu, 03 Dec 2020

16:00 - 17:00

Asymptotic Randomised Control with an application to bandit and dynamic pricing

Tanut Treetanthiploet
(University of Oxford)
Abstract

Abstract: In many situations, one needs to decide between acting to reveal data about a system and acting to generate profit; this is the trade-off between exploration and exploitation. A simple situation where we face this trade-off is a multiarmed bandit problem, where one has M ‘bandits’ which generate reward from an unknown distribution, and one must choose which bandit to play at each time. The key difficulty in the multi-armed bandit problem is that the action often affects the information obtained. Due to the curse of dimensionality, solving the bandit problem directly is often computationally intractable.

In this talk, we will formulate a general class of the multi-armed bandit problem as a relaxed stochastic control problem. By introducing an entropy premium, we obtain a smooth asymptotic approximation to the value function. This yields a novel semi-index approximation of the optimal decision process, obtained numerically by solving a fixed point problem, which can be interpreted as explicitly balancing an exploration–exploitation trade-off.  Performance of the resulting Asymptotic Randomised Control (ARC) algorithm compares favourably with other approaches to correlated multi-armed bandits.

As an application of the multi-armed bandit, we also consider a multi-armed bandit problem where the observation from each bandit arrive from a Generalised Linear Model. We then use such model to consider a dynamic online pricing problem. The numerical simulation shows that the ARC algorithm also performs well compared to others.
============

Fri, 27 Nov 2020
16:30
Virtual

On the Spectrum of Pure Higher Spin Gravity

Carmen Jorge Diaz
(University of Oxford)
Abstract

One of the very unique properties of AdS_3 spacetimes is that we can introduce a finite number of massless higher spin fields without yielding an inconsistent theory. In this talk, we would like to comment on what the spectrum of these theories looks like: from the known contribution of the light spectrum, that corresponds to the vacuum character of the W_N algebra, we can use modular invariance to constraint the heavy spectrum of the theory. However, in doing so, we find negative norm states, inconsistent with unitarity. We propose a possible cure by adding light states that can be interpreted as massive particles with a conical defect associated to them, and study what scenario we are left with. The results that we will revisit are those presented in 2009.01830. 

Thu, 18 Feb 2021

12:00 - 13:00
Virtual

Identifiability and inference for models in mathematical biology.

Professor Ruth Baker
(University of Oxford)
Further Information

We continue this term with our flagship seminars given by notable scientists on topics that are relevant to Industrial and Applied Mathematics. 

Note the new time of 12:00-13:00 on Thursdays.

This will give an opportunity for the entire community to attend and for speakers with childcare responsibilities to present.

Abstract

Simple mathematical models have had remarkable successes in biology, framing how we understand a host of mechanisms and processes. However, with the advent of a host of new experimental technologies, the last ten years has seen an explosion in the amount and types of quantitative data now being generated. This sets a new challenge for the field – to develop, calibrate and analyse new, biologically realistic models to interpret these data. In this talk I will showcase how quantitative comparisons between models and data can help tease apart subtle details of biological mechanisms, as well as present some steps we have taken to tackle the mathematical challenges in developing models that are both identifiable and can be efficiently calibrated to quantitative data.

Thu, 19 Nov 2020

16:00 - 17:00
Virtual

OCIAM DPhils present their research

Amy Kent, Michael Negus, Edwina Yeo and Helen Zha
(University of Oxford)
Abstract

Amy Kent

Multiscale Mathematical Models for Tendon Tissue Engineering

 

Tendon tissue engineering aims to grow functional tendon in vitro. In bioreactor chambers, cells growing on a solid scaffold are fed with nutrient-rich media and stimulated by mechanical loads. The Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences is developing a Humanoid Robotic Bioreactor, where cells grow on a flexible fibrous scaffold actuated by a robotic shoulder. Tendon cells modulate their behaviour in response to shear stresses - experimentally, it is desirable to design robotic loading regimes that mimic physiological loads. The shear stresses are generated by flowing cell media; this flow induces deformation of the scaffold which in turn modulates the flow. Here, we capture this fluid-structure interaction using a homogenised model of fluid flow and scaffold deformation in a simplified bioreactor geometry. The homogenised model admits analytical solutions for a broad class of forces representing robotic loading. Given the solution to the microscale problem, we can determine microscale shear stresses at any point in the domain. In this presentation, we will outline the model derivation and discuss the experimental implications of model predictions.

=======================

Michael Negus

High-Speed Droplet Impact Onto Deformable Substrates: Analysis And Simulations

 

The impact of a high-speed droplet onto a substrate is a highly non-linear, multiscale phenomenon and poses a formidable challenge to model. In addition, when the substrate is deformable, such as a spring-suspended plate or an elastic sheet, the fluid-structure interaction introduces an additional layer of complexity. We present two modeling approaches for droplet impact onto deformable substrates: matched asymptotics and direct numerical simulations. In the former, we use Wagner's theory of impact to derive analytical expressions which approximate the behaviour during the early stages of the impact. In the latter, we use the open source volume-of-fluid code Basilisk to conduct direct numerical simulations designed to both validate the analytical framework and provide insight into the later times of impact. Through both methods, we are able to observe how the properties of the substrate, such as elasticity, affect the behaviour of the flow. We conclude by showing how these methods are complementary, as a combination of both can lead to a thorough understanding of the droplet impact across timescales.

=======================

Edwina Yeo

Modelling of Magnetically Targeted Stem Cell Delivery

 

Targeting delivery of stem cells to the site of an injury is a key challenge in regenerative medicine. One possible approach is to inject cells implanted withmagnetic nanoparticles into the blood stream. Cells can then be targeted to the delivery site by an external magnetic field. At the injury site, it is of criticalimportance that the cells do not form an aggregate which could significantly occlude the vessel.We develop a model for the transport of magnetically tagged cells in blood under the action of an external magnetic field. We consider a system of blood and stem cells in a single vessel.  We exploit the small aspect ratio of the vessel to examine the system asymptotically. We consider the system for a range of magnetic field strengths and varying strengths of the diffusion coefficient of the stem cells. We explore the different regimes of the model and determine the optimal conditions for the effective delivery of stem cells while minimising vessel occlusion.


=======================

Helen Zha

Mathematical model of a valve-controlled, gravity driven bioreactor for platelet production

Hospitals sometimes experience shortages of donor blood platelet supplies, motivating research into~\textit{in vitro}~production of platelets. We model a novel platelet bioreactor described in Shepherd et al [1]. The bioreactor consists of an upper channel, a lower channel, and a cell-seeded porous collagen scaffold situated between the two. Flow is driven by gravity, and controlled by valves on the four inlets and outlets. The bioreactor is long relative to its width, a feature which we exploit to derive a lubrication reduction of unsteady Stokes flow coupled to Darcy. As the shear stress experienced by cells influences platelet production, we use our model to quantify the effect of varying pressure head and valve dynamics on shear stress.

 

[1] Shepherd, J.H., Howard, D., Waller, A.K., Foster, H.R., Mueller, A., Moreau, T., Evans, A.L., Arumugam, M., Chalon, G.B., Vriend, E. and Davidenko, N., 2018. Structurally graduated collagen scaffolds applied to the ex vivo generation of platelets from human pluripotent stem cell-derived megakaryocytes: enhancing production and purity. Biomaterials.

Fri, 13 Nov 2020
16:00
Virtual

Holographic correlators at finite temperature

Murat Koloğlu
(University of Oxford)
Abstract

We consider weakly-coupled QFT in AdS at finite temperature. We compute the holographic thermal two-point function of scalar operators in the boundary theory. We present analytic expressions for leading corrections due to local quartic interactions in the bulk, with an arbitrary number of derivatives and for any number of spacetime dimensions. The solutions are fixed by judiciously picking an ansatz and imposing consistency conditions. The conditions include analyticity properties, consistency with the operator product expansion, and the Kubo-Martin-Schwinger condition. For the case without any derivatives we show agreement with an explicit diagrammatic computation. The structure of the answer is suggestive of a thermal Mellin amplitude. Additionally, we derive a simple dispersion relation for thermal two-point functions which reconstructs the function from its discontinuity.

Fri, 27 Nov 2020

14:00 - 15:00
Virtual

The Springer correspondence for algebraists

Emile Okada
(University of Oxford)
Abstract

One of the fundamental examples of geometric representation theory is the Springer correspondence which parameterises the irreducible representations of the Weyl group of a lie algebra in terms of nilpotent orbits of the lie algebra and irreducible representations of the equivariant fundamental group of said nilpotent orbits. If you don’t like geometry this may sound entirely mysterious. In this talk I will hopefully offer a gentle introduction to the subject and present a preprint by Lusztig (2020) which gives an entirely algebraic description of the springer correspondence.

Fri, 20 Nov 2020

14:00 - 15:00
Virtual

Real Representations of C_2 - Graded Groups

James Taylor
(University of Oxford)
Abstract

A Real representation of a $C_2$-graded group $H < G$ ($H$ an index two subgroup) is a complex representation of $H$ with an action of the other coset $G \backslash H$ (“odd" elements) satisfying appropriate algebraic coherence conditions. In this talk I will present three such Real representation theories. In these, each odd element acts as an antilinear operator, a bilinear form or a sesquilinear form (equivalently a linear map to $V$ from the conjugate, the dual, or the conjugate dual of $V$) respectively. I will describe how these theories are related, how representations in each are classified, and how the first generalises the classical representation theory of $H$ over the real numbers - retaining much of its beauty and subtlety.

Thu, 12 Nov 2020

14:00 - 15:00
Virtual

Affinoid Quillen's Lemma and its applications

Ioan Stanciu
(University of Oxford)
Further Information

Note the day is a Thursday!

Abstract

Let $k$ be a field and $A$ a $k$-algebra. The classical Quillen's Lemma states that if $A$ if is equipped with an exhaustive filtration such that the associated graded ring is commutative and finitely generated $k$-algebra then for any finitely generated $A$-module $M$, every element of the endomorphism ring of $M$ is algebraic over $k$. In particular, Quillen's Lemma may be applied to the enveloping algebra of a finite dimensional Lie algebra. I aim to present an affinoid version of Quillen's Lemma which strengthness a theorem proved by Ardakov and Wadsley. Depending on time, I will show how this leads to an (almost) classification of the primitive spectrum of the affinoid enveloping algebra of a semisimple Lie algebra.

Fri, 30 Oct 2020

14:00 - 15:00
Virtual

Finiteness properties of skew polynomial rings

James Timmins
(University of Oxford)
Abstract

Polynomial rings $R[X]$ are a fundamental construction in commutative algebra, under which Hilbert's basis theorem controls a finiteness property: being Noetherian. We will describe the picture for the non-commutative world; this leads us towards other interesting finiteness conditions.

Wed, 11 Nov 2020
10:00
Virtual

Extending Leighton's Graph Covering Theorem

Sam Shepherd
(University of Oxford)
Abstract

Leighton's Theorem states that if two finite graphs have a common universal cover then they have a common finite cover. I will explore various ways in which this result can and can't be extended.

Subscribe to University of Oxford