Thu, 22 Oct 2020
12:00
Virtual

A nonlinear open mapping principle, with applications to the Jacobian determinant / A general nonlinear mapping theorem and applications to the incompressible Euler equations

André Guerra / Lukas Koch
(University of Oxford)
Abstract

I will present a nonlinear version of the open mapping principle which applies to constant-coefficient PDEs which are both homogeneous and weak* stable. An example of such a PDE is the Jacobian equation. I will discuss the consequences of such a result for the Jacobian and its relevance towards an answer to a long-standing problem due to Coifman, Lions, Meyer and Semmes. This is based on joint work with Lukas Koch and Sauli Lindberg.

/

I present a general nonlinear open mapping principle suited to applications to scale-invariant PDEs in regularity regimes where the equations are stable under weak* convergence. As an application I show that, for any $p < \infty$, the set of initial data for which there are dissipative weak solutions in $L^p_t L^2_x$ is meagre in the space of solenoidal L^2 fields. This is based on joint work with A. Guerra (Oxford) and S. Lindberg (Aalto).

 

Thu, 15 Oct 2020
12:00
Virtual

(Non-)unique limits of geometric flows / The Landau equation as a gradient flow

James Kohout / Jeremy Wu
(University of Oxford)
Abstract

In the study of geometric flows it is often important to understand when a flow which converges along a sequence of times going to infinity will, in fact, converge along every such sequence of times to the same limit. While examples of finite dimensional gradient flows that asymptote to a circle of critical points show that this cannot hold in general, a positive result can be obtained in the presence of a so-called Lojasiewicz-Simon inequality. In this talk we will introduce this problem of uniqueness of asymptotic limits and discuss joint work with Melanie Rupflin and Peter M. Topping in which we examined the situation for a geometric flow that is designed to evolve a map describing a closed surface in a given target manifold into a parametrization of a minimal surface.

/

The Landau equation is an important PDE in kinetic theory modelling plasma particles in a gas. It can be derived as a limiting process from the famous Boltzmann equation. From the mathematical point of view, the Landau equation can be very challenging to study; many partial results require, for example, stochastic analysis as well as a delicate combination of kinetic and parabolic theory. The major open question is uniqueness in the physically relevant Coulomb case. I will present joint work with Jose Carrillo, Matias Delgadino, and Laurent Desvillettes where we cast the Landau equation as a generalized gradient flow from the optimal transportation perspective motivated by analogous results on the Boltzmann equation. A direct outcome of this is a numerical scheme for the Landau equation in the spirit of de Giorgi and Jordan, Kinderlehrer, and Otto. An extended area of investigation is to use the powerful gradient flow techniques to resolve some of the open problems and recover known results.

Mon, 30 Nov 2020
12:45
Virtual

Twisted QFT and Operator Algebra

Jihwan Oh
(University of Oxford)
Abstract

I will discuss various operator algebras in supersymmetric quantum field theories in various dimensions. The operator algebras are induced and classified by generalised topological twists. Omega deformation plays an important role in connecting different sectors. This talk is based on previous works and a work in progress with Junya Yagi.

Mon, 23 Nov 2020
12:45
Virtual

An optical theorem for CFT and high-energy string scattering in AdS at one loop

Tobias Hansen
(University of Oxford)
Abstract

In this talk I will present an optical theorem for perturbative CFTs, which directly computes the double discontinuity of CFT correlators in terms of the discontinuities of correlators at lower loops or lower points, in analogy to the optical theoreom for scattering amplitudes. I will then discuss the application of this theorem to high-energy scattering of type IIb strings in AdS at one loop and finite 't Hooft coupling. Tidal excitations are taken into account and shown to be efficiently described by an AdS vertex function. The result is related to the 1987 flat space result of Amati, Ciafaloni and Veneziano via the flat space limit in impact parameter space.

Mon, 16 Nov 2020
12:45
Virtual

Geometry, Strings and QFTs in d > 4

Lakshya Bhardwaj
(University of Oxford)
Abstract

We will discuss recent progress in understanding (ordinary and generalized) symmetries, dualities and classification of superconformal field theories in 5d and 6d, which involves the study of M-theory and F-theory compactified on Calabi-Yau threefolds.

Mon, 09 Nov 2020
12:45
Virtual

Classical scattering of spinning black holes from quantum amplitudes

Alexander Ochirov
(University of Oxford)
Abstract

In view of the recent observations of gravitational-wave signals from black-hole mergers, classical black-hole scattering has received considerable interest due to its relation to the classical bound-state problem of two black holes inspiraling onto each other. In this talk I will discuss the link between classical scattering of spinning black holes and quantum scattering amplitudes for massive spin-s particles. Considering the first post-Minkowskian (PM) order, I will explain how the spin-exponentiated structure of the relevant tree-level amplitude follows from minimal coupling to Einstein's gravity and in the s → ∞ limit generates the black holes' complete series of spin-induced multipoles. The resulting scattering function will be shown to encode in a simple way the classical net changes in the black-hole momenta and spins at 1PM order and to all orders in spins. I will then comment on the results and challenges at 2PM order and beyond.
 

Mon, 26 Oct 2020
12:45
Virtual

Discrete and higher-form symmetries from wrapped M5-branes

Federico Bonetti
(University of Oxford)
Abstract

A vast class of 4d SCFTs can be engineered by wrapping a stack of M5-branes on a Riemann surface. These SCFTs can exhibit a variety of global symmetries, continuous or discrete, including both ordinary (0-form) symmetries, as well as generalized (higher-form) symmetries. In this talk, I will focus on discrete and higher-form symmetries in setups with M5-branes on a smooth Riemann surface. Adopting a holographic point of view, a crucial role is played by topological mass terms in 5d supergravity (similar to BF terms in four dimensions). I will discuss how the global symmetries of the boundary 4d theory are inferred from the 5d topological terms, and how one can compute 4d ‘t Hooft anomalies involving discrete and/or higher-form symmetries.

Mon, 19 Oct 2020
12:45
Virtual

Joint Moments of Characteristic Polynomials of Random Unitary Matrices

Jon Keating
(University of Oxford)
Abstract

 I will review what is known and not known about the joint moments of the characteristic polynomials of random unitary matrices and their derivatives. I will then explain some recent results which relate the joint moments to an interesting class of measures, known as Hua-Pickrell measures. This leads to the proof of a conjecture, due to Chris Hughes in 2000, concerning the asymptotics of the joint moments, as well as establishing a connection between the measures in question and one of the Painlevé equations.

Thu, 15 Oct 2020

16:00 - 17:00
Virtual

Inversion in Volvox: Forces and Fluctuations of Cell Sheet Folding

Pierre Haas
(University of Oxford)
Abstract

Tissue folding during animal development involves an intricate interplay
of cell shape changes, cell division, cell migration, cell
intercalation, and cell differentiation that obfuscates the underlying
mechanical principles. However, a simpler instance of tissue folding
arises in the green alga Volvox: its spherical embryos turn themselves
inside out at the close of their development. This inversion arises from
cell shape changes only.

In this talk, I will present a model of tissue folding in which these
cell shape changes appear as variations of the intrinsic stretches and
curvatures of an elastic shell. I will show how this model reproduces
Volvox inversion quantitatively, explains mechanically the arrest of
inversion observed in mutants, and reveals the spatio-temporal
regulation of different biological driving processes. I will close with
two examples illustrating the challenges of nonlinearity in tissue
folding: (i) constitutive nonlinearity leading to nonlocal elasticity in
the continuum limit of discrete cell sheet models; (ii) geometric
nonlinearity in large bending deformations of morphoelastic shells.
 

Tue, 08 Sep 2020

17:00 - 18:00

Joshua Bull - Can maths tell us how to win at Fantasy Football?

Joshua Bull
(University of Oxford)
Further Information

Fantasy Football is played by millions of people worldwide, and there are countless strategies that you can choose to try to beat your friends and win the game. But what’s the best way to play? Should you be patient and try to grind out a win, or are you better off taking some risks and going for glory? Should you pick players in brilliant form, or players with a great run of fixtures coming up? And what is this Fantasy Football thing anyway?

As with many of life’s deep questions, maths can help us shed some light on the answers. We’ll explore some classic mathematical problems which help us understand the world of Fantasy Football. We’ll apply some of the modelling techniques that mathematicians use in their research to the problem of finding better Fantasy Football management strategies. And - if we’re lucky - we’ll answer the big question: Can maths tell us how to win at Fantasy Football?

Joshua Bull is a Postdoctoral Research Associate in the Mathematical Institute in Oxford and the winner of the 2019-2020 Premier League Fantasy Football competition (from nearly 8 million entrants).

Watch live (no need to register):
https://twitter.com/OxUniMaths
https://www.facebook.com/OxfordMathematics/
https://livestream.com/oxuni/bull
Oxford Mathematics YouTube Channel

The Oxford Mathematics Public Lectures are generously supported by XTX Markets.

 

Subscribe to University of Oxford