Tue, 09 Oct 2018

19:30 - 21:15
L1

James Sparks & the City of London Sinfonia - Bach and the Cosmos SOLD OUT

James Sparks and City of London Sinfonia
(University of Oxford)
Abstract

Johann Sebastian Bach was the most mathematical of composers. Oxford Mathematician and Cambridge organ scholar James Sparks will explain just how mathematical and City of London Sinfonia will elaborate with a special performance of the Goldberg Variations. 

---

James Sparks - Bach and the Cosmos (30 minutes)

City of London Sinfonia - J S Bach arr. Sitkovetsky, Goldberg Variations (70 minutes)

Alexandra Wood - Director/Violin

--

Please email @email to register

Watch live:
https://www.facebook.com/OxfordMathematics
https://www.livestream.com/oxuni/Bach-Cosmos

The Oxford Mathematics Public Lectures are generously supported by XTX Markets

Tue, 05 Feb 2019

17:00 - 18:15
L1

James Maynard - Prime Time: How simple questions about prime numbers affect us all

James Maynard
(University of Oxford)
Further Information

Why should anyone care about primes? Well, prime numbers are important, not just in pure mathematics, but also in the real world. Various different, difficult problems in science lead to seemingly very simple questions about prime numbers. Unfortunately, these seemingly simple problems have stumped mathematicians for thousands of years, and are now some of the most notorious open problems in mathematics!

Oxford Research Professor James Maynard is one of the brightest young stars in world mathematics at the moment, having made dramatic advances in analytic number theory in recent years. 

Please email @email to register.

Watch live:

https://www.facebook.com/OxfordMathematics/
https://livestream.com/oxuni/Maynard

The Oxford Mathematics Public Lectures are generously supported by XTX Markets.

Wed, 16 May 2018

16:00 - 17:00
C5

Thompson's Group

Sam Shepherd
(University of Oxford)
Abstract

Thompson's group F is a group of homeomorphisms of the unit interval which exhibits a strange mix of properties; on the one hand it has some self-similarity type properties one might expect of a really big group, but on the other hand it is finitely presented. I will give a proof of finite generation by expressing elements as pairs of binary trees.

Wed, 09 Jan 2019

17:00 - 18:15

Inaugural Oxford Mathematics Midlands Public Lecture (in Solihull): Marcus du Sautoy -The Num8er My5teries

Marcus du Sautoy
(University of Oxford)
Abstract

With topics ranging from prime numbers to the lottery, from lemmings to bending balls like Beckham, Professor Marcus du Sautoy will provide an entertaining and, perhaps, unexpected approach to explain how mathematics can be used to predict the future. 

We are delighted to announce our first Oxford Mathematics Midlands Public Lecture to take place at Solihull School on 9th January 2019. 

Please email @email to register

Watch live:
https://facebook.com/OxfordMathematics
https://livestream.com/oxuni/du-Sautoy

We are very grateful to Solihull School for hosting this lecture.

The Oxford Mathematics Public Lectures are generously supported by XTX Markets.

 

Tue, 01 May 2018

12:45 - 13:30
C5

Randomized algorithms for computing full, rank-revealing factorizations

Abinand Gopal
(University of Oxford)
Abstract

Over the past decade, the randomized singular value decomposition (RSVD)
algorithm has proven to be an efficient, reliable alternative to classical
algorithms for computing low-rank approximations in a number of applications.
However, in cases where no information is available on the singular value
decay of the data matrix or the data matrix is known to be close to full-rank,
the RSVD is ineffective. In recent years, there has been great interest in
randomized algorithms for computing full factorizations that excel in this
regime.  In this talk, we will give a brief overview of some key ideas in
randomized numerical linear algebra and introduce a new randomized algorithm for
computing a full, rank-revealing URV factorization.

Tue, 15 May 2018

12:00 - 13:00
C3

Structural and functional redundancy in biological networks

Alice Schwarze
(University of Oxford)
Abstract

Several scholars of evolutionary biology have suggested that functional redundancy (also known as "biological degener-
acy") is important for robustness of biological networks. Structural redundancy indicates the existence of structurally
similar subsystems that can perform the same function. Functional redundancy indicates the existence of structurally
di erent subsystems that can perform the same function. For networks with Ornstein--Uhlenbeck dynamics, Tononi et al.
[Proc. Natl. Acad. Sci. U.S.A. 96, 3257{3262 (1999)] proposed measures of structural and functional redundancy that are
based on mutual information between subnetworks. For a network of n vertices, an exact computation of these quantities
requires O(n!) time. We derive expansions for these measures that one can compute in O(n3) time. We use the expan-
sions to compare the contributions of di erent types of motifs to a network's functional redundancy.

Subscribe to University of Oxford