Thu, 13 Jun 2024

11:00 - 12:00
C3

The Ultimate Supercompactness Measure

Wojciech Wołoszyn
(University of Oxford)
Abstract

Solovay defined the inner model $L(\mathbb{R}, \mu)$ in the context of $\mathsf{AD}_{\mathbb{R}}$ by using it to define the supercompactness measure $\mu$ on $\mathcal{P}_{\omega_1}(\mathbb{R})$ naturally given by $\mathsf{AD}_{\mathbb{R}}$. Solovay speculated that stronger versions of this inner model should exist, corresponding to stronger versions of the measure $\mu$. Woodin, in his unpublished work, defined $\mu_{\infty}$ which is arguably the ultimate version of the supercompactness measure $\mu$ that Solovay had defined. I will talk about $\mu_{\infty}$ in the context of $\mathsf{AD}^+$ and the axiom $\mathsf{V} = \mathsf{Ultimate\ L}$.

https://woloszyn.org/

Thu, 06 Jun 2024

11:00 - 12:00
C3

Demushkin groups of infinite rank in Galois theory

Tamar Bar-On
(University of Oxford)
Abstract
Demushkin groups play an important role in number theory, being the maximal pro-$p$ Galois groups of local fields containing a primitive root of unity of order $p$. In 1996 Labute presented a generalization of the theory for countably infinite rank pro-$p$ groups, and proved that the $p$-Sylow subgroups of the absolute Galois groups of local fields are Demushkin groups of infinite countable rank. These results were extended by Minac & Ware, who gave necessary and sufficient conditions for Demushkin groups of infinite countable rank to occur as absolute Galois groups.
In a joint work with Prof. Nikolay Nikolov, we extended this theory further to Demushkin groups of uncountable rank. Since for uncountable cardinals, there exists the maximal possible number of nondegenerate bilinear forms, the class of Demushkin groups of uncountable rank is much richer, and in particular, the groups are not determined completely by the same invariants as in the countable case.  
Additionally, inspired by the Elementary Type Conjecture by Ido Efrat and the affirmative solution to Jarden's Question, we discuss the possibility of a free product over an infinite sheaf of Demushkin groups of infinite countable rank to be realizable as an absolute Galois group, and give a necessary and sufficient condition when the free product is taken over a set converging to 1.
Thu, 16 May 2024

11:00 - 12:00
C3

Basics of Globally Valued Fields and density of norms

Michał Szachniewicz
(University of Oxford)
Abstract

I will report on a joint work with Pablo Destic and Nuno Hultberg, about some applications of Globally Valued Fields (GVFs) and I will describe a density result that we needed, which turns out to be connected to Riemann-Zariski and Berkovich spaces.

Thu, 09 May 2024

11:00 - 12:00
C3

Skolem problem for several matrices

Emmanuel Breuillard
(University of Oxford)
Abstract

I will present a recent work with G. Kocharyan, where we show the undecidability of the following two problems: given a finitely generated subgroup G of GL(n,Q), a) determine whether G has a non-identity element whose (i,j) entry is equal to zero, and b) determine whether the stabilizer of a given vector in G is non-trivial. Undecidability of problem b) answers a question of Dixon from 1985. The proofs reduce to the undecidability of the word problem for finitely presented groups.

Wed, 08 May 2024

16:00 - 17:00
L6

The Morse local-to-global property

Davide Spriano
(University of Oxford)
Abstract

I'll talk about the Morse local-to-global property and try to convince you that is a good property. There are three reasons. Firstly, it is satisfied by many examples of interest. Secondly, it allows to prove many theorems. Thirdly, it sits nicely in the larger program of classifying groups up to quasi-isometry and it has connections with open questions.

Wed, 15 May 2024

16:00 - 17:00
L6

Out(Fₙ) and friends

Naomi Andrew
(University of Oxford)
Abstract

This talk will serve as an introduction to the outer automorphism group of a free group, its properties and the objects used to study it: especially train track maps (with various adjectives) and Culler--Vogtmann outer space. If time allows I will discuss recent work joint with Hillen, Lyman and Pfaff on stretch factors in rank 3, but the goal of the talk will be to introduce the topic well rather than to speedrun towards the theorem.

Wed, 01 May 2024

16:00 - 17:00
L6

ℓ²-Betti numbers of RFRS groups

Sam Fisher
(University of Oxford)
Abstract

RFRS groups were introduced by Ian Agol in connection with virtual fibering of 3-manifolds. Notably, the class of RFRS groups contains all compact special groups, which are groups with particularly nice cocompact actions on cube complexes. In this talk, I will give an introduction to ℓ²-Betti numbers from an algebraic perspective and discuss what group theoretic properties we can conclude from the (non)vanishing of the ℓ²-Betti numbers of a RFRS group.

Wed, 22 May 2024

16:00 - 17:00
L6

Finite quotients of Coxeter groups

Sam Hughes
(University of Oxford)
Abstract

We will try to solve the isomorphism problem amongst Coxeter groups by looking at finite quotients.  Some success is found in the classes of affine and right-angled Coxeter groups.  Based on joint work with Samuel Corson, Philip Moeller, and Olga Varghese.

Thu, 23 May 2024
12:00
L5

Cancelled

Andrea Clini
(University of Oxford)
Abstract

Cancelled

Thu, 02 May 2024
12:00
L5

Gradient Flow Approach to Minimal Surfaces

Christopher Wright
(University of Oxford)
Abstract

Minimal surfaces, which are critical points of the area functional, have long been a source of fruitful problems in geometry. In this talk, I will introduce a new approach, primarily coming from a recent paper of M. Struwe, to constructing free boundary minimal discs using a gradient flow of a suitable energy functional. I will discuss the uniqueness of solutions to the gradient flow, including recent work on the uniqueness of weak solutions, and also what is known about the qualitative behaviour of the flow, especially regarding the interpretation of singularities which arise. Time permitting, I will also mention ongoing joint work with M. Rupflin and M. Struwe on extending this theory to general surfaces with boundary.

Subscribe to University of Oxford