Tue, 09 May 2023
15:30
C4

Multivalued Dir-Minimizing Functions

Dr Immanuel Ben Porat
(University of Oxford)
Further Information

The course will serve as an introduction to the theory of multivalued Dir-minimizing functions, which can be viewed as harmonic functions which attain multiple values at each point.

Aimed at Postgraduate students interested in geometric measure theory and its link with elliptic PDEs, a solid knowledge of functional analysis and Sobolev spaces, acquaintance with variational
methods in PDEs, and some basic geometric measure theory are recommended.

Sessions led by  Dr Immanuel Ben Porat will take place on

09 May 2023 15:30 - 17:30 C4

16 May 2023 15:30 - 17:30 C4

23 May 2023 15:30 - 17:30 C4

30 May 2023 15:30 - 17:30 C4

Should you be interested in taking part in the course, please send an email to @email.

Abstract

COURSE_PROPOSAL (12).pdf

The space of unordered tuples. The notion of differentiability and the theory of metric Sobolev in the context of multi-valued functions. Multivalued maximum principle and Holder regularity. Estimates on the Hausdorff dimension of the singular set of Dir-minimizing functions. If time permits: mass minimizing currents and their link with Dir-minimizers. 

Mon, 30 Jan 2023
16:00
L6

Collisions in supersingular isogeny graphs

Wissam Ghantous
(University of Oxford)
Abstract

In this talk we will study the graph structure of supersingular isogeny graphs. These graphs are known to have very few loops and multi-edges. We formalize this idea by studying and finding bounds for their number of loops and multi-edges. We also find conditions under which these graphs are simple. To do so, we introduce a method of counting the total number of collisions (which are special endomorphisms) based on a trace formula of Gross and a known formula of Kronecker, Gierster and Hurwitz. 

The method presented in this talk can be used to study many kinds of collisions in supersingular isogeny graphs. As an application, we will see how this method was used to estimate a certain number of collisions and then show that isogeny graphs do not satisfy a certain cryptographic property that was falsely believed (and proven!) to hold.

Tue, 21 Feb 2023
16:00
C3

On the joint spectral radius

Emmanuel Breuillard
(University of Oxford)
Abstract

The joint spectral radius of a finite family S of matrices measures the rate of exponential growth of the maximal norm of an element from the product set S^n as n grows. This notion was introduced by Rota and Strang in the 60s. It arises naturally in a number of contexts in pure and applied mathematics. I will discuss its basic properties and focus on a formula of Berger and Wang and results of J. Bochi that extend to several matrices the classical for formula of Gelfand that relates the growth rate of the powers of a single matrix to its spectral radius. I give new proofs and derive explicit estimates with polynomial dependence on the dimension, refining these results. If time permits I will also discuss connections with the Tits alternative, the notion of joint spectrum, and a geometric version of these results regarding groups acting on non-positively curved spaces.

Thu, 26 Jan 2023
17:00
L3

Decidability of the class of all the rings $\mathbb{Z}/m\mathbb{Z}$: A Problem of Ax

Jamshid Derakhshan
(University of Oxford)
Abstract

In his pioneering and celebrated 1968 paper on the elementary theory of finite fields Ax asked if the theory of the class of all the finite rings $\mathbb{Z}/m\mathbb{Z}$, for all $m>1$, is decidable. In that paper, Ax proved that the existential theory of this class is decidable via his result that the theory of the class of all the rings $\mathbb{Z}/p^n\mathbb{Z}$ (with $p$ and $n$ varying) is decidable. This used Chebotarev’s Density Theorem and model theory of pseudo-finite fields.

I will talk about a recent solution jointly with Angus Macintyre of Ax’s Problem using model theory of the ring of adeles of the rational numbers.

Fri, 03 Feb 2023

12:00 - 13:00
N3.12

Geometric Incarnations of (Shifted) Quantum Loop Algebras

Henry Liu
(University of Oxford)
Abstract

I'll briefly explain quantum groups and $R$-matrices and why they're the same thing. Then we'll see how to construct various $R$-matrices from Nakajima quiver varieties and some possible applications.

Tue, 07 Feb 2023
16:00
C3

Rigidity examples constructed with wreath-like product groups

Bin Sun
(University of Oxford)
Abstract

Wreath-like product groups were introduced recently and used to construct the first positive examples of rigidity conjectures of Connes and Jones. In this talk, I will review those examples, as well as discuss some ideas to construct examples with other rigidity phenomena by modifying the wreath-like product construction.

Mon, 16 Jan 2023
16:00
N3.12

Some things about the class number formula

Håvard Damm-Johnsen
(University of Oxford)
Abstract

The Dedekind zeta function generalises the Riemann zeta
function to other number fields than the rationals. The analytic class number
formula says that the leading term of the Dedekind zeta function is a
product of invariants of the number field. I will say some things
about the class number formula, about L-functions, and about Stark's
conjecture which generalises the class number formula.

Tue, 14 Feb 2023

14:00 - 15:00
L4

Approximation of Boolean solution sets to polynomial conditions on finite prime fields

Thomas Karam
(University of Oxford)
Abstract

Let $p \ge 3$ be a prime integer. The density of a non-empty solution set of a system of affine equations $L_i(x) = b_i$, $i=1,\dots,k$ on a vector space over the field $\mathbb{F}_p$ is determined by the dimension of the linear subspace $\langle L_1,\dots,L_k \rangle$, and tends to $0$ with the dimension of that subspace. In particular, if the solution set is dense, then the system of equations contains at most boundedly many pairwise distinct linear forms. In the more general setting of systems of affine conditions $L_i(x) \in E_i$ for some strict subsets $E_i$ of $\mathbb{F}_p$ and where the solution set and its density are taken inside $S^n$ for some non-empty subset $S$ of $\mathbb{F}_p$ (such as $\{0,1\}$), we can however usually find subsets of $S^n$ with density at least $1/2$ but such that the linear subspace $\langle L_1,\dots,L_k \rangle$ has arbitrarily high dimension. We shall nonetheless establish an approximate boundedness result: if the solution set of a system of affine conditions is dense, then it contains the solution set of a system of boundedly many affine conditions and which has approximately the same density as the original solution set. Using a recent generalisation by Gowers and the speaker of a result of Green and Tao on the equidistribution of high-rank polynomials on finite prime fields we shall furthermore prove a weaker analogous result for polynomials of small degree.

Based on joint work with Timothy Gowers (College de France and University of Cambridge).

Tue, 28 Feb 2023
14:00
L6

A Lusztig-Shoji algorithm for quivers and affine Hecke algebras

Jonas Antor
(University of Oxford)
Abstract

Perverse sheaves are an indispensable tool in representation theory. Their stalks often encode important representation theoretic information such as composition multiplicities or canonical bases. For the nilpotent cone, there is an algorithm that computes these stalks, known as the Lusztig-Shoji algorithm. In this talk, we discuss how this algorithm can be modified to compute stalks of perverse sheaves on more general varieties. As an application, we obtain a new algorithm for computing canonical bases in certain quantum groups as well as composition multiplicities for standard modules of the affine Hecke algebra of $\mathrm{GL}_n$.

Subscribe to University of Oxford