Understanding the Second Mémoire of Évariste Galois: modern counterexamples to ancient writings
Abstract
The first part of Galois' Second Mémoire, less than three pages of manuscript written in 1830, is devoted to an amazing insight, far ahead of its time. Translated into modern mathematical language (and out of French), it is the theorem that a primitive soluble finite permutation group has prime-power degree. This, and Galois' ideas, and counterexamples to some of
them, will be my theme.
Modelling cell migration in the mouse embryo
Abstract
The visceral endoderm (VE) is an epithelium of approximately 200 cells
encompassing the early post-implantation mouse embryo. At embryonic day
5.5, a subset of around 20 cells differentiate into morphologically
distinct tissue, known as the anterior visceral endoderm (AVE), and
migrate away from the distal tip, stopping abruptly at the future
anterior. This process is essential for ensuring the correct orientation
of the anterior-posterior axis, and patterning of the adjacent embryonic
tissue. However, the mechanisms driving this migration are not clearly
understood. Indeed it is unknown whether the position of the future
anterior is pre-determined, or defined by the movement of the migrating
cells. Recent experiments on the mouse embryo, carried out by Dr.
Shankar Srinivas (Department of Physiology, Anatomy and Genetics) have
revealed the presence of multicellular ‘rosettes’ during AVE migration.
We are developing a comprehensive vertex-based model of AVE migration.
In this formulation cells are treated as polygons, with forces applied
to their vertices. Starting with a simple 2D model, we are able to mimic
rosette formation by allowing close vertices to join together. We then
transfer to a more realistic geometry, and incorporate more features,
including cell growth, proliferation, and T1 transitions. The model is
currently being used to test various hypotheses in relation to AVE
migration, such as how the direction of migration is determined, what
causes migration to stop, and what role rosettes play in the process.
Old and new problems in the multiscale nonlinear dynamics of beams, strings, chains, rods, ropes, filaments and whips
Accurate Density Forecasts based on Simple Nonlinear Models
Abstract
Abstract: Nonlinear models have been widely employed to characterize the
underlying structure in a time series. It has been shown that the
in-sample fit of nonlinear models is better than linear models, however,
the superiority of nonlinear models over linear models, from the
perspective of out-of-sample forecasting accuracy remains doubtful. We
compare forecast accuracy of nonlinear regime switching models against
classical linear models using different performance scores, such as root
mean square error (RMSE), mean absolute error (MAE), and the continuous
ranked probability score (CRPS). We propose and investigate the efficacy
of a class of simple nonparametric, nonlinear models that are based on
estimation of a few parameters, and can generate more accurate forecasts
when compared with the classical models. Also, given the importance of
gauging uncertainty in forecasts for proper risk assessment and well
informed decision making, we focus on generating and evaluating both point
and density forecasts.
Keywords: Nonlinear, Forecasting, Performance scores.
Elliptic Curves and Cryptography
Abstract
This talk will introduce various aspects of modern cryptography. After introducing RSA and some factoring algorithms, I will move on to how elliptic curves can be used to produce a more complex form of Diffie--Hellman key exchange.
Synchronizing groups and irreducible modules over the field of size two
14:15
A class of Weakly Interactive Particle Systems and SPDEs
Abstract
We investigate a class of weakly interactive particle systems with absorption. We assume that the coefficients in our model depend on an "absorbing" factor and prove the existence and uniqueness of the proposed model. Then we investigate the convergence of the empirical measure of the particle system and derive the Stochastic PDE satisfied by the density of the limit empirical measure. This result can be applied to credit modelling. This is a joint work with Dr. Ben Hambly.