Mon, 22 May 2023
16:00
C3

The modular approach for solving $x^r+y^r=z^p$ over totally real number fields

Diana Mocanu
(University of Warwick)
Abstract

We will first introduce the modular method for solving Diophantine Equations, famously used to
prove the Fermat Last Theorem. Then, we will see how to generalize it for a totally real number field $K$ and
a Fermat-type equation $Aa^p+Bb^q=Cc^r$ over $K$. We call the triple of exponents $(p,q,r)$ the 
signature of the equation. We will see various results concerning the solutions to the Fermat equation with
signatures $(r,r,p)$ (fixed $r$). This will involve image of inertia comparison and the study of certain
$S$-unit equations over $K$. If time permits, we will discuss briefly how to attack the very similar family
of signatures $(p,p,2)$ and $(p,p,3)$. 

Fri, 26 May 2023

12:00 - 13:00
N3.12

Non-ordinary conjectures in Iwasawa Theory

Muhammad Manji
(University of Warwick)
Abstract

The Iwasawa main conjecture, first developed in the 1960s and later generalised to a modular forms setting, is the prediction that algebraic and analytic constructions of a p-adic L-function agree. This has applications towards the Birch—Swinnerton-Dyer conjecture and many similar problems. This was proved by Kato (’04) and Skinner—Urban (’06) for ordinary modular forms. Progress in the non-ordinary setting is much more recent, requiring tools from p-adic Hodge theory and rigid analytic geometry. I aim to give an overview of this and discuss a new approach in the setting of unitary groups where even more things go wrong.

Thu, 16 Nov 2023

14:00 - 15:00
Lecture Room 3

Finite element schemes and mesh smoothing for geometric evolution problems

Bjorn Stinner
(University of Warwick)
Abstract

Geometric evolutions can arise as simple models or fundamental building blocks in various applications with moving boundaries and time-dependent domains, such as grain boundaries in materials or deforming cell boundaries. Mesh-based methods require adaptation and smoothing, particularly in the case of strong deformations. We consider finite element schemes based on classical approaches for geometric evolution equations but augmented with the gradient of the Dirichlet energy or a variant of it, which is known to produce a tangential mesh movement beneficial for the mesh quality. We focus on the one-dimensional case, where convergence of semi-discrete schemes can be proved, and discuss two cases. For networks forming triple junctions, it is desirable to keep the impact of any additional, mesh smoothing terms on the geometric evolution as small as possible, which can be achieved with a perturbation approach. Regarding the elastic flow of curves, the Dirichlet energy can serve as a replacement of the usual penalty in terms of the length functional in that, modulo rescaling, it yields the same minimisers in the long run.

Mon, 13 Feb 2023
14:15
L4

Some glueing constructions in Lagrangian mean curvature flow

Wei-Bo Su
(University of Warwick)
Abstract

Glueing construction has been used extensively to construct solutions to nonlinear geometric PDEs. In this talk, I will focus on the glueing construction of solutions to Lagrangian mean curvature flow. Specifically, I will explain the construction of Lagrangian translating solitons by glueing a small special Lagrangian 'Lawlor neck' into the intersection point of suitably rotated Lagrangian Grim Reaper cylinders. I will also discuss an ongoing joint project with Chung-Jun Tsai and Albert Wood, where we investigate the construction of solutions to Lagrangian mean curvature flow with infinite time singularities.

Tue, 08 Nov 2022

14:00 - 15:00
L5

On the Ryser-Buraldi-Stein conjecture

Richard Montgomery
(University of Warwick)
Abstract

A Latin square of order n is an n by n grid filled with n different symbols so that every symbol occurs exactly once in each row and each column, while a transversal in a Latin square is a collection of cells which share no row, column or symbol. The Ryser-Brualdi-Stein conjecture states that every Latin square of order n should have a transversal with n-1 elements, and one with n elements if n is odd. In 2020, Keevash, Pokrovskiy, Sudakov and Yepremyan improved the long-standing best known bounds on this conjecture by showing that a transversal with n-O(log n/loglog n) elements exists in any Latin square of order n. In this talk, I will discuss how to show, for large n, that a transversal with n-1 elements always exists.

Tue, 15 Nov 2022

15:30 - 16:30
L6

Unitary Brownian motion, 2D log-correlated field and loop soups

Isao Sauzzede
(University of Warwick)
Abstract

I will present two examples of log-correlated fields in 2 dimensions. It is well known that the log-characteristic polynomial of a uniform unitary matrix converges toward a 1 dimensional log-correlated field, and our first example will be obtained from a dynamical version of this model. The second example will be obtained from a radically different construction, based on the Brownian loop soup that we will introduce. It will lead to a whole family of log-correlated fields. We will focus on the description of the behaviour of these objects, more than on rigorous details.

Mon, 31 Oct 2022
14:15
L5

Closed Ricci Flows with Singularities Modeled on Asymptotically Conical Shrinkers

Max Stolarski
(University of Warwick)
Abstract

Shrinking Ricci solitons are Ricci flow solutions that self-similarly shrink under the flow. Their significance comes from the fact that finite-time Ricci flow singularities are typically modeled on gradient shrinking Ricci solitons. Here, we shall address a certain converse question, namely, “Given a complete, noncompact gradient shrinking Ricci soliton, does there exist a Ricci flow on a closed manifold that forms a finite-time singularity modeled on the given soliton?” We’ll discuss work that shows the answer is yes when the soliton is asymptotically conical. No symmetry or Kahler assumption is required, and so the proof involves an analysis of the Ricci flow as a nonlinear degenerate parabolic PDE system in its full complexity. We’ll also discuss applications to the (non-)uniqueness of weak Ricci flows through singularities.

Fri, 25 Nov 2022

12:00 - 13:00
N3.12

Knutson's Conjecture on the Representation Ring

Diego Martin Duro
(University of Warwick)
Abstract

Donald Knutson proposed the conjecture, later disproven and refined by Savitskii, that for every irreducible character of a finite group, there existed a virtual character such their tensor product was the regular character. In this talk, we disprove both this conjecture and its refinement. We then introduce the Knutson Index as a measure of the failure of Knutson's Conjecture and discuss its algebraic properties.

Mon, 08 Feb 2021

15:45 - 16:45
Virtual

Veering triangulations and related polynomial invariants

Anna Parlak
(University of Warwick)
Abstract

Veering triangulations are a special class of ideal triangulations with a rather mysterious combinatorial definition. Their importance follows from a deep connection with pseudo-Anosov flows on 3-manifolds. Recently Landry, Minsky and Taylor introduced a polynomial invariant of veering triangulations called the taut polynomial. During the talk I will discuss how and why it is connected to the Alexander polynomial of the underlying manifold.  

Thu, 26 May 2022

14:00 - 15:00
L3

Propagation and stability of stress-affected transformation fronts in solids

Mikhail Poluektov
(University of Warwick)
Abstract

There is a wide range of problems in continuum mechanics that involve transformation fronts, which are non-stationary interfaces between two different phases in a phase-transforming or a chemically-transforming material. From the mathematical point of view, the considered problems are represented by systems of non-linear PDEs with discontinuities across non-stationary interfaces, kinetics of which depend on the solution of the PDEs. Such problems have a significant industrial relevance – an example of a transformation front is the localised stress-affected chemical reaction in Li-ion batteries with Si-based anodes. Since the kinetics of the transformation fronts depends on the continuum fields, the transformation front propagation can be decelerated and even blocked by the mechanical stresses. This talk will focus on three topics: (1) the stability of the transformation fronts in the vicinity of the equilibrium position for the chemo-mechanical problem, (2) a fictitious-domain finite-element method (CutFEM) for solving non-linear PDEs with transformation fronts and (3) an applied problem of Si lithiation.

Subscribe to University of Warwick