Mon, 12 May 2014

15:45 - 16:45
Oxford-Man Institute

Inverting the signature

WEIJUN XU
(University of Warwick)
Abstract

Abstract: The signature of a path characterizes the non-commutative evolvements along the path trajectory. Nevertheless, one can extract local commutativities from the signature, thus leading to an inversion scheme.

Fri, 30 May 2014

12:00 - 13:00
L6

Weak universality of the stochastic Allen-Cahn equation

Dr. Weijun Xu
(University of Warwick)
Abstract

We consider a large class of three dimensional continuous dynamic fluctuation models, and show that they all rescale and converge to the stochastic Allen-Cahn equation, whose solution should be interpreted after a suitable renormalization procedure. The interesting feature is that, the coefficient of the limiting equation is different from one's naive guess, and the renormalization required to get the correct limit is also different from what one would naturally expect. I will also briefly explain how the recent theory of regularity structures enables one to prove such results. Joint work with Martin Hairer.

Thu, 29 May 2014
14:00
L5

Atomistic/Continuum Multiscale Methods

Christoph Ortner
(University of Warwick)
Abstract

For many questions of scientific interest, all-atom molecular simulations are still out of reach, in particular in materials engineering where large numbers of atoms, and often expensive force fields, are required. A long standing challenge has been to construct concurrent atomistic/continuum coupling schemes that use atomistic models in regions of space where high accuracy is required, with computationally efficient continuum models (e.g., FEM) of the elastic far-fields.

Many different mechanisms for achieving such atomistic/continuum couplings have been developed. To assess their relative merits, in particular accuracy/cost ratio, I will present a numerical analysis framework. I will use this framework to analyse in more detail a particularly popular scheme (the BQCE scheme), identifying key approximation parameters which can then be balanced (in a surprising way) to obtain an optimised formulation.

Finally, I will demonstrate that this analysis shows how to remove a severe bottlenecks in the BQCE scheme, leading to a new scheme with optimal convergence rate.

Fri, 17 Jan 2014

14:00 - 15:30
L3

The positive Jacobian constraint in elasticity theory and orientation-preserving Young measures

Filip Rindler
(University of Warwick)
Abstract

In elasticity theory, one naturally requires that the Jacobian determinant of the deformation is positive or even a-priori prescribed (for example incompressibility). However, such strongly non-linear and non-convex constraints are difficult to deal with in mathematical models. In this talk, which is based on joint work with K. Koumatos (Oxford) and E. Wiedemann (UBC/PIMS), I will present various recent results on how this constraint can be manipulated in subcritical Sobolev spaces, where the integrability exponent is less than the dimension.

In particular, I will give a characterization theorem for Young measures under this side constraint, which are widely used in the Calculus of Variations to model limits of nonlinear functions of weakly converging "generating" sequences. This is in the spirit of the celebrated Kinderlehrer--Pedregal Theorem and based on convex integration and "geometry" in matrix space.

Finally, applications to the minimization of integral functionals, the theory of semiconvex hulls, incompressible extensions, and approximation of weakly orientation-preserving maps by strictly orientation-preserving ones in Sobolev spaces are given.

Mon, 03 Feb 2014

15:45 - 16:45
Eagle House

Handwriting,signatures, and convolutions

BEN GRAHAM
(University of Warwick)
Abstract

The'signature', from the theory of differential equations driven by rough paths,
provides a very efficient way of characterizing curves. From a machine learning
perspective, the elements of the signature can be used as a set of features for
consumption by a classification algorithm.

Using datasets of letters, digits, Indian characters and Chinese characters, we
see that this improves the accuracy of online character recognition---that is
the task of reading characters represented as a collection of pen strokes.

Thu, 23 Jan 2014

16:00 - 17:00
L5

Elliptic Curves over Real Quadratic Fields are Modular.

Samir Siksek
(University of Warwick)
Abstract

We combine recent breakthroughs in modularity lifting with a
3-5-7 modularity switching argument to deduce modularity of elliptic curves over real
quadratic fields. We
discuss the implications for the Fermat equation. In particular we
show that if d is congruent
to 3 modulo 8, or congruent to 6 or 10 modulo 16, and $K=Q(\sqrt{d})$
then there is an
effectively computable constant B depending on K, such that if p>B is prime,
and $a^p+b^p+c^p=0$ with a,b,c in K, then abc=0.   This is based on joint work with Nuno Freitas (Bayreuth) and Bao Le Hung (Harvard).

Thu, 06 Mar 2014

14:00 - 15:00
L5

Kullback-Leibler Approximation Of Probability Measures

Professor Andrew Stuart
(University of Warwick)
Abstract

Many problems in the physical sciences

require the determination of an unknown

function from a finite set of indirect measurements.

Examples include oceanography, oil recovery,

water resource management and weather forecasting.

The Bayesian approach to these problems

is natural for many reasons, including the

under-determined and ill-posed nature of the inversion,

the noise in the data and the uncertainty in

the differential equation models used to describe

complex mutiscale physics. The object of interest

in the Bayesian approach is the posterior

probability distribution on the unknown field [1].

\\

\\

However the Bayesian approach presents a

computationally formidable task as it

results in the need to probe a probability

measure on separable Banach space. Monte

Carlo Markov Chain methods (MCMC) may be

used to achieve this [2], but can be

prohibitively expensive. In this talk I

will discuss approximation of probability measures

by a Gaussian measure, looking for the closest

approximation with respect to the Kullback-Leibler

divergence. This methodology is widely

used in machine-learning [3]. In the context of

target measures on separable Banach space

which themselves have density with respect to

a Gaussian, I will show how to make sense of the

resulting problem in the calculus of variations [4].

Furthermore I will show how the approximate

Gaussians can be used to speed-up MCMC

sampling of the posterior distribution [5].

\\

\\

[1] A.M. Stuart. "Inverse problems: a Bayesian

perspective." Acta Numerica 19(2010) and

http://arxiv.org/abs/1302.6989

\\

[2] S.L.Cotter, G.O.Roberts, A.M. Stuart and D. White,

"MCMC methods for functions: modifying old algorithms

to make them faster". Statistical Science 28(2013).

http://arxiv.org/abs/1202.0709

\\

[3] C.M. Bishop, "Pattern recognition and machine learning".

Springer, 2006.

\\

[4] F.J. Pinski G. Simpson A.M. Stuart H. Weber, "Kullback-Leibler

Approximations for measures on infinite dimensional spaces."

http://arxiv.org/abs/1310.7845

\\

[5] F.J. Pinski G. Simpson A.M. Stuart H. Weber, "Algorithms

for Kullback-Leibler approximation of probability measures in

infinite dimensions." In preparation.

Tue, 26 Nov 2013

14:30 - 15:30
L3

FO limits of trees

Dan Kral
(University of Warwick)
Abstract

Nesetril and Ossona de Mendez introduced a new notion of convergence of graphs called FO convergence. This notion can be viewed as a unified notion of convergence of dense and sparse graphs. In particular, every FO convergent sequence of graphs is convergent in the sense of left convergence of dense graphs as studied by Borgs, Chayes, Lovasz, Sos, Szegedy, Vesztergombi and others, and every FO convergent sequence of graphs with bounded maximum degree is convergent in the Benjamini-Schramm sense.

FO convergent sequences of graphs can be associated with a limit object called modeling. Nesetril and Ossona de Mendez showed that every FO convergent sequence of trees with bounded depth has a modeling. We extend this result

to all FO convergent sequences of trees and discuss possibilities for further extensions.

The talk is based on a joint work with Martin Kupec and Vojtech Tuma.

Mon, 02 Dec 2013

17:00 - 18:00
L6

A positive mass theorem for CR manifolds

Andrea Malchiodi
(University of Warwick)
Abstract

We consider a class of CR manifold which are defined as asymptotically

Heisenberg,

and for these we give a notion of mass. From the solvability of the

$\Box_b$ equation

in a certain functional class ([Hsiao-Yung]), we prove positivity of the

mass under the

condition that the Webster curvature is positive and that the manifold

is embeddable.

We apply this result to the Yamabe problem for compact CR manifolds,

assuming positivity

of the Webster class and non-negativity of the Paneitz operator. This is

joint work with

J.H.Cheng and P.Yang.

Fri, 01 Nov 2013

14:00 - 15:00
L5

Design principles and dynamics in clocks, cell cycles and signals

Professor David Rand
(University of Warwick)
Abstract

I will discuss two topics. Firstly, coupling of the circadian clock and cell cycle in mammalian cells. Together with the labs of Franck Delaunay (Nice) and Bert van der Horst (Rotterdam) we have developed a pipeline involving experimental and mathematical tools that enables us to track through time the phase of the circadian clock and cell cycle in the same single cell and to extend this to whole lineages. We show that for mouse fibroblast cell cultures under natural conditions, the clock and cell cycle phase-lock in a 1:1 fashion. We show that certain perturbations knock this coupled system onto another periodic state, phase-locked but with a different winding number. We use this understanding to explain previous results. Thus our study unravels novel phase dynamics of 2 key mammalian biological oscillators. Secondly, I present a radical revision of the Nrf2 signalling system. Stress responsive signalling coordinated by Nrf2 provides an adaptive response for protection against toxic insults, oxidative stress and metabolic dysfunction. We discover that the system is an autonomous oscillator that regulates its target genes in a novel way.

Subscribe to University of Warwick