Fri, 21 May 2021

14:00 - 15:00
Virtual

Designing molecular models by machine learning and experimental data

Professor Cecilia Clementi
(Fachbereich Physik Freie Universität Berlin)
Abstract

The last years have seen an immense increase in high-throughput and high-resolution technologies for experimental observation as well as
high-performance techniques to simulate molecular systems at a microscopic level, resulting in vast and ever-increasing amounts of high-dimensional data.
However, experiments provide only a partial view of macromolecular processes and are limited in their temporal and spatial resolution. On the other hand,
atomistic simulations are still not able to sample the conformation space of large complexes, thus leaving significant gaps in our ability to study
molecular processes at a biologically relevant scale. We present our efforts to bridge these gaps, by exploiting the available data and using state-of-the-art
machine-learning methods to design optimal coarse models for complex macromolecular systems. We show that it is possible to define simplified
molecular models to reproduce the essential information contained both in microscopic simulation and experimental measurements.

Fri, 14 May 2021

14:00 - 15:00
Virtual

The role of geometry in medicine

Dr Jessica Williams
(Edelman Lab Harvard-MIT Biomedical Engineering Centre)
Abstract

Geometrical questions commonly arise in clinical practice: for example, what is the optimal shape for a particular medical device? or what shapes of anatomical structures are indicative of pathological events? In this talk we explore two disparate clinical applications of geometrical underpinning: (A) how to design the optimal device for kidney stone removal surgery? and (B) what blood vessel shapes are associated with biomechanical failure? (A) Flexible ureteroscopy is a minimally invasive treatment for the removal of kidney stones by irrigating dust-like stone fragments with a saline solution. Finding the optimal ureteroscope tip shape for efficient flushing of stone fragments is a pertinent but complex question. We represent the renal pelvis (the main hollow cavity within the kidney) as a 2D cavity and employ adjoint-based shape optimisation to identify tip geometries that shrink the size of recirculation zones thereby reducing stone washout times. (B) The aorta is the largest blood vessel in the body, with an archetypal arched “candy-cane” shape and is responsible for transporting blood from the heart to the rest of the body. Aortic dissection, in which the inner layer of the aorta tears, can lead to frank rupture and is often rapidly fatal. Accurate clinical assessment of dissection risk from a CT scan of a patient’s thorax is paramount to patient survival. We apply statistical shape analysis, coupled with hemodynamic simulations, to identify pathological shape features of the aortic arch and to elucidate mechanistic underpinnings of aortic dissection.

Tue, 04 May 2021
14:30
Virtual

Global Riemannian acceleration in hyperbolic and spherical spaces

David Martinez
(Dept of Computer Science - University of Oxford)
Abstract

Riemannian optimization is a powerful and active area of research that studies the optimization of functions defined on manifolds with structure. A class of functions of interest is the set of geodesically convex functions, which are functions that are convex when restricted to every geodesic. In this talk, we will present an accelerated first-order method, nearly achieving the same rates as accelerated gradient descent in the Euclidean space, for the optimization of smooth and g-convex or strongly g-convex functions defined on the hyperbolic space or a subset of the sphere. We will talk about accelerated optimization of another non-convex problem, defined in the Euclidean space, that we solve as a proxy. Additionally, for any Riemannian manifold of bounded sectional curvature, we will present reductions from optimization methods for smooth and g-convex functions to methods for smooth and strongly g-convex functions and vice versa.

This talk is based on the paper https://arxiv.org/abs/2012.03618.

-

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact @email.

Thu, 11 Mar 2021
11:30
Virtual

On pseudo-analytic and adelic models of Shimura curves (joint with Chris Daw)

Boris Zilber
(Oxford University)
Abstract

I will discuss the multi-sorted structure of analytic covers H -> Y(N), where H is the upper half-plane and Y(N) are the N-level modular curves, all N, in a certain language, weaker than the language applied by Adam Harris and Chris Daw.  We define a certain locally modular reduct of the structure which is called "pure" structure - an extension of the structure of special subvarieties.  
The problem of non-elementary categorical axiomatisation for this structure is closely related to the theory of "canonical models for Shimura curves", in particular, the description of Gal_Q action on the CM-points of the Y(N). This problem for the case of curves is basically solved (J.Milne) and allows the beautiful interpretation in our setting:  the abstract automorphisms of the pure structure on CM-points are exactly the automorphisms induced by Gal_Q.  Using this fact and earlier theorem of Daw and Harris we prove categoricity of a natural axiomatisation of the pseudo-analytic structure.
If time permits I will also discuss a problem which naturally extends the above:  a categoricity statement for the structure of unramified analytic covers H -> X, where X runs over all smooth curves over a given number field.  

Thu, 17 Jun 2021

14:00 - 15:00
Virtual

Primal-dual Newton methods, with application to viscous fluid dynamics

Georg Stadler
(New York University)
Abstract

I will discuss modified Newton methods for solving nonlinear systems of PDEs. These methods introduce additional variables before deriving the Newton linearization. These variables can then often be eliminated analytically before solving the Newton system, such that existing solvers can be adapted easily and the computational cost does not increase compared to a standard Newton method. The resulting algorithms yield favorable convergence properties. After illustrating the ideas on a simple example, I will show its application for the solution of incompressible Stokes flow problems with viscoplastic constitutive relation, where the additionally introduced variable is the stress tensor. These models are commonly used in earth science models. This is joint work with Johann Rudi (Argonne) and Melody Shih (NYU).

 

--

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact @email.

Fri, 12 Mar 2021
16:00
Virtual

Boundaries, Factorisation & Mirror Duality

Daniel Zhang
(Cambridge)
Abstract

I will review recent work on N=(2,2) boundary conditions of 3d
N=4 theories which mimic isolated massive vacua at infinity. Subsets of
local operators supported on these boundary conditions form lowest
weight Verma modules over the quantised bulk Higgs and Coulomb branch
chiral rings. The equivariant supersymmetric Casimir energy is shown to
encode the boundary ’t Hooft anomaly, and plays the role of lowest
weights in these modules. I will focus on a key observable associated to
these boundary conditions; the hemisphere partition function, and apply
them to the holomorphic factorisation of closed 3-manifold partition
functions and indices. This yields new “IR formulae” for partition
functions on closed 3-manifolds in terms of Verma characters. I will
also discuss ongoing work on connections to enumerative geometry, and
the construction of elliptic stable envelopes of Aganagic and Okounkov,
in particular their physical manifestation via mirror duality
interfaces.

This talk is based on 2010.09741 and ongoing work with Mathew Bullimore
and Samuel Crew.

Thu, 27 May 2021
14:00
Virtual

Algebraic multigrid methods for GPUs

Ulrike Meier Yang
(Lawrence Livermore National Laboratory)
Abstract

Computational science is facing several major challenges with rapidly changing highly complex heterogeneous computer architectures. To meet these challenges and yield fast and efficient performance, solvers need to be easily portable. Algebraic multigrid (AMG) methods have great potential to achieve good performance, since they have shown excellent numerical scalability for a variety of problems. However, their implementation on emerging computer architectures, which favor structure, presents new challenges. To face these difficulties, we have considered modularization of AMG, that is breaking AMG components into smaller kernels to improve portability as well as the development of new algorithms to replace components that are not suitable for GPUs. Another way to achieve performance on accelerators is to increase structure in algorithms. This talk will discuss new algorithmic developments, including a new class of interpolation operators that consists of simple matrix operations for unstructured AMG and efforts to develop a semi-structured AMG method.

 

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact @email.

Thu, 20 May 2021
14:00
Virtual

The bubble transform and the de Rham complex

Ragnar Winther
(University of Oslo)
Abstract

The bubble transform was a concept introduced by Richard Falk and me in a paper published in The Foundations of Computational Mathematics in 2016. From a simplicial mesh of a bounded domain in $R^n$ we constructed a map which decomposes scalar valued functions into a sum of local bubbles supported on appropriate macroelements.The construction is done without reference to any finite element space, but has the property that the standard continuous piecewise polynomial spaces are invariant. Furthermore, the transform is bounded in $L^2$ and $H^1$, and as a consequence we obtained a new tool for the understanding of finite element spaces of arbitrary polynomial order. The purpose of this talk is to review the previous results, and to discuss how to generalize the construction to differential forms such that the corresponding properties hold. In particular, the generalized transform will be defined such that it commutes with the exterior derivative.

 

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact @email.

Subscribe to Virtual