Fri, 28 Apr 2023

14:00 - 15:00
L3

Stochastic modeling of neurotransmission dynamics

Dr Stefanie Winkelmann
(Zuse Institute Berlin)
Abstract

Abstract: Neurotransmission at chemical synapses relies on the calcium-induced fusion of synaptic vesicles with the presynaptic membrane. The distance of the vesicle to the calcium channels determines the fusion probability and consequently the postsynaptic signal. After a fusion event, both the release site and the vesicle undergo a recovery process before becoming available for reuse again. For all these process components, stochastic effects are widely recognized to play an important role. In this talk, I will present our recent efforts on how to describe and structurally understand neurotransmission dynamics using stochastic modeling approaches. Starting with a linear reaction scheme, a method to directly compute the exact first- and second-order moments of the filtered output signal is proposedFor a modification of the model including explicit recovery steps, the stochastic dynamics are compared to the mean-field approximation in terms of reaction rate equations. Finally, we reflect on spatial extensions of the model, as well as on their approximation by hybrid methods.

References:

A. Ernst, C. Schütte, S. Sigrist, S. Winkelmann. Mathematical Biosciences343, 108760, 2022.

- A. Ernst, N. Unger, C. Schütte, A. Walter, S. Winkelmann. Under Review. https://arxiv.org/abs/2302.01635

 

Thu, 02 Dec 2021

12:00 - 13:00
Virtual

Controllability for the (multi-dimensional) Burgers equation with localised one-dimensional control

Ana Djurdjevac
(Zuse Institute Berlin)
Further Information

A Zoom link to the talk will be circulated to the mailing list on Wednesday, 1 December.  Please contact Benjamin Fehrman to be added.

Abstract

We will consider the viscous Burgers driven by a localised one-dimensional control. The problem is considered in a bounded domain and is supplemented with the Dirichlet boundary condition. We will prove that any solution of the equation in question can be exponentially stabilised. Combining this result with an earlier result on local exact controllability we will show global exact controllability by a localised control. This is a joint work with A. Shirikyan.

Subscribe to Zuse Institute Berlin