Wed, 14 Nov 2018
16:30
C1

Small polycyclic groups

David Hume
(Oxford University)
Abstract

Polycyclic groups either have polynomial growth, in which case they are virtually nilpotent, or exponential growth. I will give two interesting examples of "small" polycyclic groups which are extensions of $\mathbb{R}^2$ and the Heisenberg group by the integers, and attempt to justify the claim that they are small by sketching an argument that every exponential growth polycyclic group contains one of these.

Wed, 07 Nov 2018
16:00
C1

Boundaries of Hyperbolic Groups

Sam Colvin
(Bristol University)
Abstract

You’re an amateur investigator hired to uncover the mysterious goings on of a dark cult. They call themselves Geometric Group Theorists and they’re under suspicion of pushing humanity’s knowledge too far. You’ve tracked them down to their supposed headquarters. Foolishly, you enter. Your mind writhes as you gaze unwittingly upon the Eldritch horror they’ve summoned… Group Theory! You think fast; donning the foggy glasses of quasi-isometry, you prevent your mind shattering from the unfathomable complexity of The Beast. You spy a weak spot and the phrase `Gromov Hyperbolicity’ flashes across your mind. You peer deeper, further, forever… only to find yourself somewhere rather familiar, strange, but familiar… no, self-similar! You’ve fought with fractals before, this weirdness can be tamed! Your insight is sufficient and The Beast retreats for now.
In other words, given an infinite group, we associate to it an infinite graph, called a Cayley graph, which gives us a notion of the ‘geometry’ of a group. Through this we can ask what kind of groups have hyperbolic geometry, or at least an approximation of it called Gromov hyperbolicity. Hyperbolic groups are quite a nice class of groups but a large one, so we introduce the Gromov boundary of a hyperbolic group and explain how it can be used to distinguish groups in this class.

Wed, 24 Oct 2018
16:00
C1

Finding fibres for free factors

Benjamin Brück
(Bielefeld University)
Abstract

"Fibre theorems" in the style of Quillen's fibre lemma are versatile tools used to study the topology of partially ordered sets. In this talk, I will formulate two of them and explain how these can be used to determine the homotopy type of the complex of (conjugacy classes of) free factors of a free group.
The latter is joint work with Radhika Gupta (see https://arxiv.org/abs/1810.09380).

Wed, 31 Oct 2018
16:00
C1

An Introduction to Seifert Fibred Spaces

Joseph Scull
(Oxford University)
Abstract


A core problem in the study of manifolds and their topology is that of telling them apart. That is, when can we say whether or not two manifolds are homeomorphic? In two dimensions, the situation is simple, the Classification Theorem for Surfaces allows us to differentiate between any two closed surfaces. In three dimensions, the problem is a lot harder, as the century long search for a proof of the Poincaré Conjecture demonstrates, and is still an active area of study today.
As an early pioneer in the area of 3-manifolds Seifert carved out his own corner of the landscape instead of attempting to tackle the entire problem. By reducing his scope to the subclass of 3-manifolds which are today known as Seifert fibred spaces, Seifert was able to use our knowledge of 2-manifolds and produce a classification theorem of his own.
In this talk I will define Seifert fibred spaces, explain what makes them so much easier to understand than the rest of the pack, and give some insight on why we still care about them today.
 

Wed, 17 Oct 2018
16:00
C1

Graph products of groups

Motiejus Valiunas
(Southampton University)
Abstract

Graph products are a class of groups that 'interpolate' between direct and free products, and generalise the notion of right-angled Artin groups. Given a property that free products (and maybe direct products) are known to satisfy, a natural question arises: do graph products satisfy this property? For instance, it is known that graph products act on tree-like spaces (quasi-trees) in a nice way (acylindrically), just like free products. In the talk we will discuss a construction of such an action and, if time permits, its relation to solving systems of equations over graph products.

Tue, 16 Oct 2018
14:45
C1

A Bounded Bestiary of Feynman Integral Calabi-Yau Geometries

Jake Bourjaily
(Neils Bohr Institute)
Abstract

In this informal talk, I describe the kinds of functions relevant to scattering amplitudes in perturbative, four-dimensional quantum field theories. In particular, I will argue that generic amplitudes are non-polylogarithmic (beyond one loop), but that there is an upper bound to their geometric complexity. Moreover, I show a veritable `bestiary' of examples which saturate this bound in complexity---including three, all-loop families of integrals defined in massless $\phi^4$ theory which can, at best, be represented as dilogarithms integrated over (2L-2)-dimensional Calabi-Yau manifolds. 

Tue, 09 Oct 2018
12:00
C1

Measuring rank robustness in scored protein interaction networks

Lyuba V. Bozhilova
(University of Oxford)
Abstract

Many protein interaction databases provide confidence scores based on the experimental evidence underpinning each in- teraction. The databases recommend that protein interac- tion networks (PINs) are built by thresholding on these scores. We demonstrate that varying the score threshold can re- sult in PINs with significantly different topologies. We ar- gue that if a node metric is to be useful for extracting bio- logical signal, it should induce similar node rankings across PINs obtained at different thresholds. We propose three measures—rank continuity, identifiability, and instability— to test for threshold robustness. We apply these to a set of twenty-five metrics of which we identify four: number of edges in the step-1 ego network, the leave-one-out dif- ference in average redundancy, average number of edges in the step-1 ego network, and natural connectivity, as robust across medium-high confidence thresholds. Our measures show good agreement across PINs from different species and data sources. However, analysis of synthetically gen- erated scored networks shows that robustness results are context-specific, and depend both on network topology and on how scores are placed across network edges. 

Thu, 22 Mar 2018

14:00 - 15:00
C1

The Usefulness of a Modified Restricted Isometry Property

Simon Foucart
(Texas A&M University)
Abstract

The restricted isometry property is arguably the most prominent tool in the theory of compressive sensing. In its classical version, it features l_2 norms as inner and outer norms. The modified version considered in this talk features the l_1 norm as the inner norm, while the outer norm depends a priori on the distribution of the random entries populating the measurement matrix.  The modified version holds for a wider class of random matrices and still accounts for the success of sparse recovery via basis pursuit and via iterative hard thresholding. In the special case of Gaussian matrices, the outer norm actually reduces to an l_2 norm. This fact allows one to retrieve results from the theory of one-bit compressive sensing in a very simple way. Extensions to one-bit matrix recovery are then straightforward.
 

Fri, 09 Nov 2018

15:00 - 16:00
C1

Formulating a theory - mathematics in Thomson and Rutherford's collaboration on x-ray ionisation

Isobel Falconer
(University of St Andrews)
Abstract

In 1897 J.J. Thomson 'discovered' the electron. The previous year, he and his research student Ernest Rutherford (later to 'discover' theatomic nucleus), collaborated in experiments to work out why gases exposed to x-rays became conducting. 


This talk will discuss the very different mathematical educations of the two men, and the impact these differences had on their experimental investigation and the theory they arrived at. This theory formed the backdrop to Thomson's electron work the following year. 

Subscribe to C1