Wed, 23 Jan 2019
16:00
C1

Commensurator rigidity from actions on graphs

Richard Wade
(Oxford University)
Abstract

I will give a description of a method introduced by N. Ivanov to study the abstract commensurator of a group by using a rigid action of that group on a graph. We will sketch Ivanov's theorem regarding the abstract commensurator of a mapping class group. Time permitting, I will describe how these methods are used in some of my recent work with Horbez on outer automorphism groups of free groups.

Tue, 22 Jan 2019
15:00
C1

Cluster Adjacency

Dr Omer Gurdogan
(Southampton)
Abstract

Cluster Adjacency is a geometric principle which defines a subclass of multiple polylogarithms with analytic properties compatible with that of scattering amplitudes and Feynman loop integrals. We use this principle to a priori remove the redundances in the perturbative bootstrap approach and efficiently compute the four-loop NMHV heptagon. Moreover, cluster adjacency is naturally applied to the space of $A_n$ polylogarithms and generates numerous structures therein to be explored further.

Wed, 16 Jan 2019
16:00
C1

Links between dimensions three and four

Matthias Nagel
(Oxford University)
Abstract

Knot theory investigates the many ways of embedding a circle into the three-dimensional sphere. The study of these embeddings is not only important for understanding three-dimensional manifolds, but is also intimately related to many new and surprising phenomena appearing in dimension four. I will discuss how four-dimensional interpretations of some invariants can help us understand surfaces that bound a given link (embedding of several disjoint circles).

Fri, 21 Dec 2018

15:45 - 16:45
C1

tba

Tue, 25 Feb 2020

12:00 - 13:00
C1

A framework for constructing generative models of mesoscale structure in multilayer networks

Marya Bazzi
(Alan Turing Institute)
Abstract

Multilayer networks are a way to represent dependent connectivity patterns — e.g., time-dependence, multiple types of interactions, or both — that arise in many applications and which are difficult to incorporate into standard network representations. In the study of multilayer networks, it is important to investigate mesoscale (i.e., intermediate-scale) structures, such as communities, to discover features that lie between the microscale and the macroscale. We introduce a framework for the construction of generative models for mesoscale structure in multilayer networks.  We model dependency at the level of partitions rather than with respect to edges, and treat the process of generating a multilayer partition separately from the process of generating edges for a given multilayer partition. Our framework can admit many features of empirical multilayer networks and explicitly incorporates a user-specified interlayer dependency structure. We discuss the parameters and some properties of our framework, and illustrate an example of its use with benchmark models for multilayer community-detection tools. 

 

Tue, 30 Oct 2018
15:30
C1

Pure spinor description of maximally supersymmetric gauge theories

Max Guillen
(ITP Sao Paolo)
Abstract

Using non-minimal pure spinor superspace, Cederwall has constructed BRST-invariant actions for D=10 super-Born-Infeld and D=11 supergravity which are quartic in the superfields. But since the superfields have explicit dependence on the non-minimal pure spinor variables, it is non-trivial to show these actions correctly describe super-Born-Infeld and supergravity. In this talk, I will expand solutions to the equations of motion from the pure spinor action for D=10 abelian super Born-Infeld to leading order around the linearized solutions and show that they correctly describe the interactions expected. If I have time, I will explain how to generalize these ideas to D=11 supergravity.

Wed, 28 Nov 2018
16:00
C1

Introduction to Bounded Cohomology

Nicolaus Heuer
(Oxford University)
Abstract

In 1982, Gromov introduced bounded cohomology to give estimates on the minimal volume of manifolds. Since then, bounded cohomology has become an independent and active research field. In this talk I will give an introduction to bounded cohomology, state many open problems and relate it to other fields. 

Wed, 21 Nov 2018
16:00
C1

Haken's algorithm for recognising the unknot

Mehdi Yazdi
(Oxford University)
Abstract


I will discuss the basics of normal surface theory, and how they were used to give an algorithm for deciding whether a given diagram represents the unknot. This version is primarily based on Haken's work, with simplifications from Schubert and Jaco-Oertel.
 

Subscribe to C1