Abstract complexes
Abstract
I will give an overview of the complexes used in algebraic topology using the language of abstract complexes.
This is a lunch seminar, so feel free to bring your lunch along!
Cohomology and applications
Abstract
We will discuss the Chapter "Cohomology" from the book "Elementary applied topology" by Robert Ghrist (available at https://www.math.upenn.edu/~ghrist/notes.html).
This is a lunch seminar, so feel free to bring your lunch along!
Moduli spaces of singular curves
Abstract
Moduli spaces attempt to classify all mathematical objects of a particular type, for example algebraic curves or vector bundles, and record how they 'vary in families'. Often they are constructed using Geometric Invariant Theory (GIT) as a quotient of a parameter space by a group action. A common theme is that in order to have a nice (eg Hausdorff) space one must restrict one's attention to a suitable subclass of 'stable' objects, in effect leaving certain badly behaved objects out of the classification. Assuming no prior familiarity, I will elucidate the structure of instability in GIT, and explain how recent progress in non-reductive GIT allows one to construct moduli spaces for these so-called 'unstable' objects. The particular focus will be on the application of this principle to the GIT construction of the moduli space of stable curves, leading to moduli spaces of curves of fixed singularity type.
Integrating without integrating: weights of Kontsevich graphs
Abstract
Abstract: The Kontsevich graph weights are period integrals whose
values make Kontsevich's star-product associative for any Poisson
structure. We illustrate, by using software, to what extent these
weights are determined by their properties: the associativity
constraint for the star-product (for all Poisson structures), the
multiplicativity (decomposition into prime graphs), the cyclic
relations, and some relations due to skew-symmetry. Up to the order 4
in ℏ we express all the weights in terms of 10 parameters (6
parameters modulo gauge-equivalence), and we verify pictorially that
the star-product expansion is associative modulo ō(ℏ⁴) for every value
of the 10 parameters. This is joint work with Arthemy Kiselev.
16:00
The Morse boundary
Abstract
We give a construction of a boundary (the Morse boundary) which can be assigned to any proper geodesic metric space and which is rigid, in the sense that a quasi-isometry of spaces induces a homeomorphism of boundaries. To obtain a more workable invariant than the homeomorphism type, I will introduce the metric Morse boundary and discuss notions of capacity and conformal dimensions of the metric Morse boundary. I will then demonstrate that these dimensions give useful invariants of relatively hyperbolic and mapping class groups. This is joint work with Matthew Cordes (Technion).
16:00
Treelike structures in boundaries of hyperbolic groups
Abstract
Inspired by the theory of JSJ decomposition for 3-manifolds, one can define the JSJ decomposition of a group as a maximal canonical way of cutting it up into simpler pieces using amalgamated products and HNN extensions. If the group in question has some sort of non-positive curvature property then one can define a boundary at infinity for the group, which captures its large scale geometry. The JSJ decomposition of the group is then reflected in the treelike structure of the boundary. In this talk I will discuss this connection in the case of hyperbolic groups and explain some of the ideas used in its proof by Brian Bowditch.
16:00
Asymptotic Dimension and Coarse Cohomology
Abstract
Asymptotic dimension is a large-scale analogue of Lebesgue covering dimension. I will give a gentle introduction to asymptotic dimension, prove some basic propeties and give some applications to group theory. I will then define coarse homology and explain how when defined, virtual cohomological dimension gives a lower bound on asymptotic dimension.
C^infinity Rings and Manifolds with Corners
Abstract
Manifolds with corners are similar to manifolds, yet are locally modelled on subsets $[0,\infty)^k \times R^{n-k}$. I will discuss some of the theory of these objects, as well as introducing $C^\infty$-rings. This will explain the background to my current research in $C^\infty$-Algebraic Geometry. Time permitting, I will briefly discuss my current research on $C^\infty$-schemes with corners and motivation of this research.