Wed, 30 Nov 2016

16:00 - 17:00
C1

Geometric Invariant Theory and its Variation

Joshua Jackson
((Oxford University))
Abstract

A central tool in the construction of moduli spaces throughout algebraic geometry and beyond, geometric invariant theory (GIT) aims to sensibly answer the question, "How can we quotient an algebraic variety by a group action?" In this talk I will explain some basics of GIT and indicate how it can be used to build moduli spaces, before exploring one of its salient features: the non-canonicity of the quotient. I will show how the dependence on an additional parameter, a choice of so-called 'linearisation', leads to a rich 'wall crossing' picture, giving different interrelated models of the quotient. Time permitting, I will also speak about recent developments in non-reductive GIT, and joint work extending this dependence to the non-reductive setting.

Wed, 19 Oct 2016

16:00 - 17:00
C1

Kähler groups, residually free groups and subgroups of direct products of surface groups.

Claudio Llosa Isenrich
(Oxford University)
Abstract

A Kähler group is a group which can be realised as the fundamental group of a close Kähler manifold. We will prove that for a Kähler group $G$ we have that $G$ is residually free if and only if $G$ is a full subdirect product of a free abelian group and finitely many closed hyperbolic surface groups. We will then address Delzant-Gromov's question of which subgroups of direct products of surface groups are Kähler: We explain how to construct subgroups of direct products of surface groups which have even first Betti number but are not Kähler. All relevant notions will be explained in the talk.

Mon, 14 Nov 2016
17:00
C1

“Knowledge gained by experience”: Olaus Henrici – engineer, geometer, and maker of mathematical models

June Barrow-Green
(The Open University)
Abstract

The (Danish-born) German mathematician Olaus Henrici (1840–1918) studied in Karlsruhe, Heidelberg and Berlin before making his career in London, first at University College and then, from 1884, at the newly formed Central Technical College where he established a Laboratory of Mechanics.  Although Henrici’s original training was as an engineer, he became known as a promoter of projective geometry and as an advocate for the use of mathematical models.  In my talk, I shall discuss the different aspects of Henrici's work and explore connections between them.

Wed, 08 Jun 2016

16:00 - 17:00
C1

Finiteness properties of subgroups of direct products of surface groups

Claudio Llosa Isenrich
(Oxford)
Abstract

We will explain a result of Bridson, Howie, Miller and Short on the finiteness properties of subgroups of direct products of surface groups. More precisely, we will show that a subgroup of a direct product of n surface groups is of finiteness type $FP_n$ if and only if there is virtually a direct product of at most n finitely generated surface groups. All relevant notions will be explained in the talk.

 

Wed, 01 Jun 2016

16:00 - 17:00
C1

Finding CAT(-1) structures on groups

Sam Brown
(UCL London)
Abstract

I will describe a method to find negatively curved structures on some groups, by manipulating metrics on piecewise hyperbolic complexes. As an example, I will prove that hyperbolic limit groups are CAT(-1).

Wed, 25 May 2016

16:00 - 17:00
C1

Simplicial Boundary of CAT(0) Cube Complexes

Kobert Ropholler
(Oxford)
Abstract

The simplicial boundary is another way to study the boundary of CAT(0) cube complexes. I will define this boundary introducing the relevant terminology from CAT(0) cube complexes along the way. There will be many examples and many pictures, hopefully to help understanding but also to improve my (not so great) drawing skills. 

Wed, 18 May 2016

16:00 - 17:00
C1

Residual properties of amalgams

Gareth Wilkes
Abstract

I will discuss the circumstances in which residual finiteness properties of an amalgamated free product $A\ast_c B$ may be deduced from the properties of $A$ and $B$, with particular regard to the pro-p residual properties.

Tue, 17 May 2016

10:00 - 11:00
C1

Number theory tools for Cryptographic Applications

Giacomo Micheli
((Oxford University))
Abstract

In this lecture we describe the effective Chebotarev Theorem for global function fields and show how this can be used to describe the statistics of a polynomial map f in terms of its monodromy groups. With this tool in hand, we will provide a strategy to remove the remaining heuristic in the quasi-polynomial time algorithm for discrete
logarithm problems over finite fields of small characteristic.

Subscribe to C1