Fri, 13 Mar 2015

14:15 - 15:15
C1

Ice stream dynamics: a free boundary problem

Christian Schoof
(University of British Columbia)
Abstract

Ice streams are narrow bands of rapidly sliding ice within an otherwise

slowly flowing continental ice sheet. Unlike the rest of the ice sheet,

which flows as a typical viscous gravity current, ice streams experience

weak friction at their base and behave more like viscous 'free films' or

membranes. The reason for the weak friction is the presence of liquid

water at high pressure at the base of the ice; the water is in turn

generated as a result of dissipation of heat by the flow of the ice

stream. I will explain briefly how this positive feedback can explain the

observed (or inferred, as the time scales are rather long) oscillatory

behaviour of ice streams as a relaxation oscillation. A key parameter in

simple models for such ice stream 'surges' is the width of an ice stream.

Relatively little is understood about what controls how the width of an

ice stream evolves in time. I will focus on this problem for most of the

talk, showing how intense heat dissipation in the margins of an ice stream

combined with large heat fluxes associated with a switch in thermal

boundary conditions may control the rate at which the margin of an ice

stream migrates. The relevant mathematics involves a somewhat non-standard

contact problem, in which a scalar parameter must be chosen to control the

location of the contact region. I will demonstrate how the problem can be

solved using the Wiener-Hopf method, and show recent extensions of this

work to more realistic physics using a finite element discretization.

Fri, 13 Feb 2015
14:15
C1

Numerical methods in seismic imaging

Paul Childs
((ex) Schlumberger Gould Research)
Abstract

A form of PDE-constrained inversion is today used as an engineering tool for seismic imaging. Today there are some successful studies and good workflows are available. However, mathematicians will find some important unanswered questions: (1) robustness of inversion with highly nonconvex objective functions; (2) scalable solution highly oscillatory problem; and (3) handling of uncertainties. We shall briefly illustrate these challenges, and mention some possible solutions.

Fri, 30 Jan 2015

14:15 - 15:15
C1

Semi-Bayesian methods under ice

Martin O'Leary
(Swansea University)
Abstract

One of the main obstacles to forecasting sea level rise over the coming centuries is the problem of predicting changes in the flow of ice sheets, and in particular their fast-flowing outlet glaciers. While numerical models of ice sheet flow exist, they are often hampered by a lack of input data, particularly concerning the bedrock topography beneath the ice. Measurements of this topography are relatively scarce, expensive to obtain, and often error-prone. In contrast, observations of surface elevations and velocities are widespread and accurate.

In an ideal world, we could combine surface observations with our understanding of ice flow to invert for the bed topography. However, this problem is ill-posed, and solutions are both unstable and non-unique. Conventionally, this problem is circumvented by the use of regularization terms in the inversion, but these are often arbitrary and the numerical methods are still somewhat unstable.

One philosophically appealing option is to apply a fully Bayesian framework to the problem. Although some success has been had in this area, the resulting distributions are extremely difficult to work with, both from an interpretive standpoint and a numerical one. In particular, certain forms of prior information, such as constraints on the bedrock slope and roughness, are extremely difficult to represent in this framework.

A more profitable avenue for exploration is a semi-Bayesian approach, whereby a classical inverse method is regularized using terms derived from a Bayesian model of the problem. This allows for the inclusion of quite sophisticated forms of prior information, while retaining the tractability of the classical inverse problem. In particular, we can account for the severely non-Gaussian error distribution of many of our measurements, which was previously impossible.

Wed, 03 Dec 2014

16:00 - 17:00
C1

Dehn's problems and Houghton's groups

Charles Cox
(Southampton)
Abstract

Deciding whether or not two elements of a group are conjugate might seem like a trivial problem. However, there exist finitely presented groups where this problem is undecidable: there is no algorithm to output yes or no for any two elements chosen. In this talk Houghton groups (a family of groups all having solvable conjugacy problem) will be introduced as will the idea of twisted conjugacy: a generalisation of the conjugacy problem where an automorphism is also given. This will be our main tool in answering whether finite extensions and finite index subgroups of any Houghton group have solvable conjugacy problem.

Wed, 26 Nov 2014

16:00 - 17:00
C1

There is only one gap in the isoperimetric spectrum

Robert Kropholler
(Oxford)
Abstract

We saw earlier that a subquadratic isoperimetric inequality implies a linear one. I will give examples of groups, due to Brady and Bridson, which prove that this is the only gap in the isoperimetric spectrum. 

Wed, 19 Nov 2014

16:00 - 17:00
C1

Orbifolds and the 84(g-1) Theorem

Federico Vigolo
(Oxford)
Abstract

In 1983 Kerckhoff settled a long standing conjecture by Nielsen proving that every finite subgroup of the mapping class group of a compact surface can be realized as a group of diffeomorphisms. An important consequence of this theorem is that one can now try to study subgroups of the mapping class group taking the quotient of the surface by these groups of diffeomorphisms. In this talk we will study quotients of surfaces under the action of a finite group to find bounds on the cardinality of such a group.

Wed, 12 Nov 2014

16:00 - 17:00
C1

The gap in the isoperimetric spectrum

Giles Gardam
(Oxford)
Abstract

The Dehn function of a group measures the complexity of the group's word problem, being the upper bound on the number of relations from a group presentation required to prove that a word in the generators represents the identity element. The Filling Theorem which was first stated by Gromov connects this to the isoperimetric functions of Riemannian manifolds. In this talk, we will see the classification of hyperbolic groups as those with a linear Dehn function, and give Bowditch's proof that a subquadratic isoperimetric inequality implies a linear one (which gives the only gap in the "isoperimetric spectrum" of exponents of polynomial Dehn functions).

Wed, 05 Nov 2014

16:00 - 17:00
C1

The Surface Subgroup Theorem

Alexander Margolis
(Oxford)
Abstract

We will give an outline of the proof by Kahn and Markovic who showed that a closed hyperbolic 3-manifold $\textbf{M}$ contains a closed $\pi_1$-injective surface. This is done using exponential mixing to find many pairs of pants in $\textbf{M}$, which can then be glued together to form a suitable surface. This answers a long standing conjecture of Waldhausen and is a key ingredient in the proof of the Virtual Haken Theorem.

Wed, 29 Oct 2014

16:00 - 17:00
C1

Vertex cuts separating the ends of a graph

Gareth Wilkes
(Oxford)
Abstract

Dinits, Karzanov and Lomonosov showed that the minimal edge cuts of a finite graph have the structure of a cactus, a tree-like graph constructed from cycles. Evangelidou and Papasoglu extended this to minimal cuts separating the ends of an infinite graph. In this talk we will discuss a similar structure theorem for minimal vertex cuts separating the ends of a graph; these can be encoded by a succulent, a mild generalization of a cactus that is still tree-like.

Subscribe to C1