Wed, 03 Jun 2015

16:00 - 17:00
C1

Homological Filling Functions

Robert Kropholler
(Oxford)
Abstract

I will discuss various types of filling functions on topological spaces, stating some results in the area. I will then go onto prove that a finitely presented subgroup of a hyperbolic group of cohomological dimension 2 is hyperbolic. On the way I will prove a stronger result about filling functions of subgroups of hyperbolic groups of cohomological dimension $n$.

Wed, 20 May 2015

16:00 - 17:00
C1

Random walks and isoperimetric inequalities

Federico Vigolo
(Oxford)
Abstract

In this talk I will try to show how certain asymptotic properties of a random walk on a graph are related to geometric properties of the graph itself. A special focus will be put on spectral properties and isoperimetric inequalities, proving Kesten's criterion for amenability.

Wed, 13 May 2015

16:00 - 17:00
C1

Bounds on Splittings of Groups

Alexander Margolis
(Oxford)
Abstract

We say a group is accessible if the process of iteratively decomposing G as an amalgamated free product or HNN extension over a finite group terminates in a finite number of steps. We will see Dunwoody's proof that FP2 groups are accessible, but that finitely generated groups need not be. If time permits, we will examine generalizations by Bestvina-Feighn, Sela and Louder.

Wed, 06 May 2015

16:00 - 17:00
C1

Thompson's Groups

Giles Gardam
(Oxford)
Abstract

This talk will be an introduction to the weird and wonderful world of Thompson's groups $F$, $T$ and $V$. For example, the group $T$ was the first known finitely presented infinite simple group, $V$ has a finitely presented subgroup with co-NP-complete word problem, and whether or not $F$ is amenable is an infamous open problem.

Tue, 21 Apr 2015

15:45 - 16:45
C1

Donaldson-Thomas theory for Calabi-Yau 4-folds

Yalong Cao
(Hong Kong)
Abstract

Donaldson-Thomas theory for Calabi-Yau 3-folds is a complexification of Chern-Simons theory. In this talk, I will discuss joint work with Naichung Conan Leung on the complexification of Donaldson theory.

Tue, 10 Feb 2015

11:00 - 13:00
C1

Some analytic problems on liquid crystals (part 2)

Min-Chun Hong
(The University of Queensland)
Abstract

1)      The Hardt-Lin's problem and a new approximation of a relaxed energy for harmonic maps.

We introduce a new approximation for  the relaxed energy $F$ of the Dirichlet energy and prove that the minimizers of the approximating functional converge to a minimizer $u$ of the relaxed energy for harmonic maps, and that $u$ is  partially regular without using the concept of Cartesian currents.

2)  Partial regularity in liquid crystals  for  the Oseen-Frank model:  a new proof of the result of Hardt, Kinderlehrer and Lin.

Hardt, Kinderlehrer and Lin (\cite {HKL1}, \cite {HKL2}) proved that a minimizer $u$ is smooth on some open subset
$\Omega_0\subset\Omega$ and moreover $\mathcal H^{\b} (\Omega\backslash \Omega_0)=0$ for some positive $\b <1$, where
$\mathcal H^{\b}$ is the Hausdorff measure.   We will present a new proof of Hardt, Kinderlehrer and Lin.

 3)      Global existence of solutions of the Ericksen-Leslie system for  the Oseen-Frank model.

The dynamic flow of liquid crystals is described by the Ericksen-Leslie system. The Ericksen-Leslie system is a system of  the Navier-Stokes equations coupled with the gradient flow for the Oseen-Frank model,   which generalizes the heat flow for harmonic maps  into the $2$-sphere.   In this talk, we will outline a proof of global existence of solutions of the Ericksen-Leslie system for a general Oseen-Frank  model in 2D.

Tue, 03 Feb 2015

11:00 - 13:00
C1

Some analytic problems on liquid crystals (part 1)

Min-Chun Hong
(The University of Queensland)
Abstract

1)      The Hardt-Lin's problem and a new approximation of a relaxed energy for harmonic maps.

We introduce a new approximation for  the relaxed energy $F$ of the Dirichlet energy and prove that the minimizers of the approximating functional converge to a minimizer $u$ of the relaxed energy for harmonic maps, and that $u$ is  partially regular without using the concept of Cartesian currents.

2)  Partial regularity in liquid crystals  for  the Oseen-Frank model:  a new proof of the result of Hardt, Kinderlehrer and Lin.

Hardt, Kinderlehrer and Lin (\cite {HKL1}, \cite {HKL2}) proved that a minimizer $u$ is smooth on some open subset
$\Omega_0\subset\Omega$ and moreover $\mathcal H^{\b} (\Omega\backslash \Omega_0)=0$ for some positive $\b <1$, where
$\mathcal H^{\b}$ is the Hausdorff measure.   We will present a new proof of Hardt, Kinderlehrer and Lin.

 3)      Global existence of solutions of the Ericksen-Leslie system for  the Oseen-Frank model.

The dynamic flow of liquid crystals is described by the Ericksen-Leslie system. The Ericksen-Leslie system is a system of  the Navier-Stokes equations coupled with the gradient flow for the Oseen-Frank model,   which generalizes the heat flow for harmonic maps  into the $2$-sphere.   In this talk, we will outline a proof of global existence of solutions of the Ericksen-Leslie system for a general Oseen-Frank  model in 2D.

Wed, 11 Mar 2015

16:00 - 17:00
C1

Zabrodsky mixing

Simon Gritschacher
(Oxford)
Abstract

Localization and completion of spaces are fundamental tools in homotopy theory. "Zabrodsky mixing" uses localization to "mix homotopy types". It was used to provide a counterexample to the conjecture that any finite H-space which is $A_3$ is also $A_\infty$. The material in this talk will be very classical (and rather basic). I will describe Sullivan's localization functor and demonstrate Zabrodsky's mixing by constructing a non-classical H-space.

Wed, 25 Feb 2015

16:00 - 17:00
C1

3-manifolds and Kähler groups

Claudio Llosa Isenrich
(Oxford)
Abstract

A Kähler group is a group which is isomorphic to the fundamental group of a compact Kähler manifold. In 2008 Dimca and Suciu proved that the groups which are both Kähler and isomorphic to the fundamental group of a closed 3-manifold are precisely the finite subgroups of $O(4)$ which act freely on $S^3$. In this talk we will explain Kotschick's proof of this result. On the 3-manifold side the main tools that will be used are the first Betti number and Poincare Duality and on the Kähler group side we will make use of the Albanese map and some basic results about Kähler groups. All relevant notions will be explained in the talk.

Subscribe to C1