Tue, 10 Feb 2015

11:00 - 13:00
C1

Some analytic problems on liquid crystals (part 2)

Min-Chun Hong
(The University of Queensland)
Abstract

1)      The Hardt-Lin's problem and a new approximation of a relaxed energy for harmonic maps.

We introduce a new approximation for  the relaxed energy $F$ of the Dirichlet energy and prove that the minimizers of the approximating functional converge to a minimizer $u$ of the relaxed energy for harmonic maps, and that $u$ is  partially regular without using the concept of Cartesian currents.

2)  Partial regularity in liquid crystals  for  the Oseen-Frank model:  a new proof of the result of Hardt, Kinderlehrer and Lin.

Hardt, Kinderlehrer and Lin (\cite {HKL1}, \cite {HKL2}) proved that a minimizer $u$ is smooth on some open subset
$\Omega_0\subset\Omega$ and moreover $\mathcal H^{\b} (\Omega\backslash \Omega_0)=0$ for some positive $\b <1$, where
$\mathcal H^{\b}$ is the Hausdorff measure.   We will present a new proof of Hardt, Kinderlehrer and Lin.

 3)      Global existence of solutions of the Ericksen-Leslie system for  the Oseen-Frank model.

The dynamic flow of liquid crystals is described by the Ericksen-Leslie system. The Ericksen-Leslie system is a system of  the Navier-Stokes equations coupled with the gradient flow for the Oseen-Frank model,   which generalizes the heat flow for harmonic maps  into the $2$-sphere.   In this talk, we will outline a proof of global existence of solutions of the Ericksen-Leslie system for a general Oseen-Frank  model in 2D.

Tue, 03 Feb 2015

11:00 - 13:00
C1

Some analytic problems on liquid crystals (part 1)

Min-Chun Hong
(The University of Queensland)
Abstract

1)      The Hardt-Lin's problem and a new approximation of a relaxed energy for harmonic maps.

We introduce a new approximation for  the relaxed energy $F$ of the Dirichlet energy and prove that the minimizers of the approximating functional converge to a minimizer $u$ of the relaxed energy for harmonic maps, and that $u$ is  partially regular without using the concept of Cartesian currents.

2)  Partial regularity in liquid crystals  for  the Oseen-Frank model:  a new proof of the result of Hardt, Kinderlehrer and Lin.

Hardt, Kinderlehrer and Lin (\cite {HKL1}, \cite {HKL2}) proved that a minimizer $u$ is smooth on some open subset
$\Omega_0\subset\Omega$ and moreover $\mathcal H^{\b} (\Omega\backslash \Omega_0)=0$ for some positive $\b <1$, where
$\mathcal H^{\b}$ is the Hausdorff measure.   We will present a new proof of Hardt, Kinderlehrer and Lin.

 3)      Global existence of solutions of the Ericksen-Leslie system for  the Oseen-Frank model.

The dynamic flow of liquid crystals is described by the Ericksen-Leslie system. The Ericksen-Leslie system is a system of  the Navier-Stokes equations coupled with the gradient flow for the Oseen-Frank model,   which generalizes the heat flow for harmonic maps  into the $2$-sphere.   In this talk, we will outline a proof of global existence of solutions of the Ericksen-Leslie system for a general Oseen-Frank  model in 2D.

Wed, 11 Mar 2015

16:00 - 17:00
C1

Zabrodsky mixing

Simon Gritschacher
(Oxford)
Abstract

Localization and completion of spaces are fundamental tools in homotopy theory. "Zabrodsky mixing" uses localization to "mix homotopy types". It was used to provide a counterexample to the conjecture that any finite H-space which is $A_3$ is also $A_\infty$. The material in this talk will be very classical (and rather basic). I will describe Sullivan's localization functor and demonstrate Zabrodsky's mixing by constructing a non-classical H-space.

Wed, 25 Feb 2015

16:00 - 17:00
C1

3-manifolds and Kähler groups

Claudio Llosa Isenrich
(Oxford)
Abstract

A Kähler group is a group which is isomorphic to the fundamental group of a compact Kähler manifold. In 2008 Dimca and Suciu proved that the groups which are both Kähler and isomorphic to the fundamental group of a closed 3-manifold are precisely the finite subgroups of $O(4)$ which act freely on $S^3$. In this talk we will explain Kotschick's proof of this result. On the 3-manifold side the main tools that will be used are the first Betti number and Poincare Duality and on the Kähler group side we will make use of the Albanese map and some basic results about Kähler groups. All relevant notions will be explained in the talk.

Wed, 18 Feb 2015

16:00 - 17:00
C1

Groups acting on $\mathbb{R}$-trees

Alexander Margolis
(Oxford)
Abstract

In Bass-Serre theory, one derives structural properties of groups from their actions on simplicial trees. In this talk, we introduce the theory of groups acting on $\mathbb{R}$-trees. In particular, we explain how the Rips machine is used to classify finitely generated groups which act freely on $\mathbb{R}$-trees.

Wed, 11 Feb 2015

16:00 - 17:00
C1

Subgroups of Aut($F_n$) and actions on CAT(0) spaces

Robert Kropholler
(Oxford)
Abstract

I will look at some decidability questions for subgroups of Aut($F_n$) for general $n$. I will then discuss semisimple actions of Aut($F_n$) on complete CAT(0) spaces proving that the Nielsen moves will act elliptically. I will also look at proving Aut($F_3$) is large and if time permits discuss the fact that Aut($F_n$) is not Kähler

Wed, 04 Feb 2015

16:00 - 17:00
C1

The h-cobordism theorem and its dimension 4 failure

Gareth Wilkes
(Oxford)
Abstract

This talk will give an almost complete proof of the h-cobordism theorem, paying special attention to the sources of the dimensional restrictions in the theorem. If time allows, the alterations needed to prove its cousin, the s-cobordism theorem, will also be sketched.

Wed, 28 Jan 2015

16:00 - 17:00
C1

Diameters, Random Walks and the Nottingham Group

Henry Bradford
(Oxford)
Abstract

The Nottingham Group of a finite field is an object of great interest in profinite group theory, owing to its extreme structural properties and the relative ease with which explicit computations can be made within it. In this talk I shall explore both of these themes, before describing some new work on efficient short-word approximation in the Nottingham Group, based on the profinite Solovay-Kitaev procedure. Time permitting, I shall give an application to the dynamics of compositions of random power series.

Wed, 21 Jan 2015

16:00 - 17:00
C1

On subgroup structure of Wilson type groups

Matteo Vannacci
(Royal Holloway, University of London)
Abstract
Wilson type groups are the first known examples of hereditarily just infinite (h.j.i.) profinite groups which are not virtually pro-p. In this talk I will firstly present a short survey on just infinite groups and where h.j.i. groups appeared. Secondly I will present the construction of Wilson type groups via iterated wreath products and finally I will discuss results obtained in my PhD regarding the Hausdorff dimension and the subgroup growth of these groups.
Fri, 08 May 2015

14:15 - 15:15
C1

Probing the Jovian Interior via its Gravitational Field: Mathematical Theory and Applications

Keke Zhang
(University of Exeter)
Abstract
Alternating, fast cloud level zonal winds on Jupiter have been accurately measured for several decades but their depth of penetration into the Jovian interior, which is closely associated with the origin of the winds, still remains highly controversial. The Juno spacecraft, now on its way to Jupiter and will arrive there in 2016, will probe the depth of penetration of the zonal winds by accurately measuring their effects on the high-order zonal gravitational coefficients at unprecedentedly high precision. Interpretation of these gravitational measurements requires an accurate description of the shape, density structure and internal wind profile. We shall discuss the mathematical theory and accurate numerical simulation for the gravitational field of rapidly rotating, non-spherical gaseous Jupiter.
Subscribe to C1