Mon, 02 Dec 2019

16:00 - 17:00
C1

What the L! The surprising world of L-functions

George Robinson
(Oxford)
Abstract

L-functions have become a vital part of modern number theory over the past century, allowing comparisons between arithmetic objects with seemingly very different properties. In the first part of this talk, I will give an overview of where they arise, their properties, and the mathematics that has developed in order to understand them. In the second part, I will give a sketch of the beautiful result of Herbrand-Ribet concerning the arithmetic interpretations of certain special values of the Riemann zeta function, the prototypical example of an L-function.

Mon, 25 Nov 2019

16:00 - 17:00
C1

When shifted primes do not occur in difference sets

Zoe Wang
(Oxford)
Abstract

Let $[N] = \{1,..., N\}$ and let $A$ be a subset of $[N]$. A result of Sárközy in 1978 showed that if the difference set $A-A = \{ a - a’: a, a’ \in A\}$ does not contain any number which is one less than a prime, then $A = o(N)$. The quantitative upper bound on $A$ obtained from Sárközy’s proof has be improved subsequently by Lucier, and by Ruzsa and Sanders. In this talk, I will discuss my work on this problem. I will give a brief introduction of the iteration scheme and the Hardy-Littlewood method used in the known proofs, and our major arc estimate which leads to an improved bound.

Mon, 18 Nov 2019

16:00 - 17:00
C1

Erdős' primitive set conjecture

Jared Duker Lichtman
(Oxford)
Abstract

A subset of the integers larger than 1 is called $\textit{primitive}$ if no member divides another. Erdős proved in 1935 that the sum of $1/(n \log n)$ over $n$ in a primitive set $A$ is universally bounded for any choice of $A$. In 1988, he famously asked if this universal bound is attained by the set of prime numbers. In this talk we shall discuss some recent progress towards this conjecture and related results, drawing on ideas from analysis, probability, & combinatorics.

Tue, 10 Dec 2019

12:00 - 13:00
C1

Relationship between ideology and language in the Catalan independence context

Samuel Martin-Gutierrez
(Universidad Politécnica de Madrid)
Abstract

Political polarization generates strong effects on society, driving controversial debates and influencing the institutions. Territorial disputes are one of the most important polarized scenarios and have been consistently related to the use of language. In this work, we analyzed the opinion and language distributions of a particular territorial dispute around the independence of the Spanish region of Catalonia through Twitter data. We infer a continuous opinion distribution by applying a model based on retweet interactions, previously selecting a seed of elite users with fixed and antagonist opinions. The resulting distribution presents a mainly bimodal behavior with an intermediate third pole that appears spontaneously showing a less polarized society with the presence of not only antagonist opinions. We find that the more active, engaged and influential users hold more extreme positions. Also we prove that there is a clear relationship between political positions and the use of language, showing that against independence users speak mainly Spanish while pro-independence users speak Catalan and Spanish almost indistinctly. However, the third pole, closer in political opinion to the pro-independence pole, behaves similarly to the against-independence one concerning the use of language.

Ref: https://www.nature.com/articles/s41598-019-53404-x



 

Tue, 21 Jan 2020

12:00 - 13:00
C1

Generative models and representational learning on street networks

Mateo Neira
(University College London)
Abstract

Cities are now central to addressing global changes, ranging from climate change to economic resilience. There is a growing concern of how to measure and quantify urban phenomena, and one of the biggest challenges in quantifying different aspects of cities and creating meaningful indicators lie in our ability to extract relevant features that characterize the topological and spatial patterns of urban form. Many different models that can reproduce large-scale statistical properties observed in systems of streets have been proposed, from spatial random graphs to economical models of network growth. However, existing models fail to capture the diversity observed in street networks around the world. The increased availability of street network datasets and advancements in deep learning models present a new opportunity to create more accurate and flexible models of urban street networks, as well as capture important characteristics that could be used in downstream tasks.  We propose a simple approach called Convolutional-PCA (ConvPCA) for both creating low-dimensional representations of street networks that can be used for street network classification and other downstream tasks, as well as a generating new street networks that preserve visual and statistical similarity to observed street networks.

Link to the preprint

Mon, 11 Nov 2019

16:00 - 17:00
C1

On Serre's Uniformity Conjecture

Jay Swar
(Oxford)
Abstract

Given a prime p and an elliptic curve E (say over Q), one can associate a "mod p Galois representation" of the absolute Galois group of Q by considering the natural action on p-torsion points of E.

In 1972, Serre showed that if the endomorphism ring of E is "minimal", then there exists a prime P(E) such that for all p>P(E), the mod p Galois representation is surjective. This raised an immediate question (now known as Serre's uniformity conjecture) on whether P(E) can be bounded as E ranges over elliptic curves over Q with minimal endomorphism rings.

I'll sketch a proof of this result, the current status of the conjecture, and (time permitting) some extensions of this result (e.g. to abelian varieties with appropriately analogous endomorphism rings).

Mon, 04 Nov 2019

16:00 - 17:00
C1

What is Arakelov Geometry?

Esteban Gomezllata Marmolejo
(Oxford)
Abstract

Arakelov geometry studies schemes X over ℤ, together with the Hermitian complex geometry of X(ℂ).
Most notably, it has been used to give a proof of Mordell's conjecture (Faltings's Theorem) by Paul Vojta; curves of genus greater than 1 have at most finitely many rational points.
In this talk, we'll introduce some of the ideas behind Arakelov theory, and show how many results in Arakelov theory are analogous—with additional structure—to classic results such as intersection theory and Riemann Roch.

Mon, 28 Oct 2019

16:00 - 17:00
C1

Cartier Operators

Zhenhua Wu
(Oxford)
Abstract

Given a morphism of schemes of characteristic p, we can construct a morphism from the exterior algebra of Kahler differentials to the cohomology of De Rham complex, which is an isomorphism when the original morphism is smooth.

Mon, 21 Oct 2019

16:00 - 17:00
C1

Relative decidability via the tilting correspondence

Konstantinos Kartas
(Oxford University)
Abstract

The goal of the talk is to present a proof of the following statement:
Let (K,v) be an algebraic extension of (Q_p,v_p) whose completion is perfectoid. We show that K is relatively decidable to its tilt K^♭, i.e. if K^♭ is decidable in the language of valued fields, then so is K. 
In the first part [of the talk], I will try to cover the necessary background needed from model theory and the theory of perfectoid fields.

Tue, 29 Oct 2019

17:00 - 18:00
C1

Functional and Geometric Inequalities via Optimal Transport

Andrea Mondino
(University of Oxford)
Abstract

I will give an overview of the localization technique: a powerful dimension-reduction tool for proving geometric and functional inequalities.  Having its roots in a  pioneering work of Payne-Weinberger in the 60ies about sharp Poincare’-Wirtinger inequality on Convex Bodies in Rn, recently such a technique found new applications for a range of sharp geometric and functional inequalities in spaces with Ricci curvature bounded below.

Subscribe to C1