Tue, 03 Mar 2020

12:00 - 13:00
C1

Dynamic approaches to measure heterogeneity in spatial networks

Vincenzo Nicosia
(Queen Mary University)
Abstract

Spatial networks are often the most natural way to represent spatial information of different kinds. One of the outstanding problems in current spatial network research is to effectively quantify the heterogeneity of the discrete-valued spatial distributions underlying a spatial graph. In this talk we will presentsome recent alternative approaches to estimate heterogeneity in spatial networks based on simple dynamical processes running on them.

Mon, 10 Jun 2019

16:00 - 17:00
C1

The Golod-Shafarevich Theorem: Endgame

Jay Swar
(Oxford)
Abstract

The principal ideal theorem (1930) guaranteed that any number field K would embed into a finite extension, called the Hilbert class field of K, in which every ideal of the original field became principal -- however the Hilbert class field itself will not necessarily have class number 1. The class field tower problem asked whether iteratively taking Hilbert class fields must stabilize after finitely many steps. In 1964, it was finally answered in the negative by Golod and Shafarevich who produced infinitely many examples and pioneered the framework that is still the most common setting for deciding when a number field will have an infinite class field tower.

In this talk, I will finish the proof of their cohomological result and thus fully justify how it settled the class field tower problem.

Mon, 03 Jun 2019

16:00 - 17:00
C1

The Golod-Shafarevich Theorem

Jay Swar
(Oxford)
Abstract

The principal ideal theorem (1930) ascertained that any number field K embeds into a finite extension, called the Hilbert class field of K, in which every ideal of the original field became principal -- however the Hilbert class field itself will not necessarily have class number 1. The class field tower problem asked whether iteratively taking Hilbert class fields must stabilize after finitely many steps. In 1964, it was finally answered in the negative by Golod and Shafarevich who produced infinitely many examples and pioneered the framework that is still the most common setting for deciding when a number field will have an infinite class field tower.

In this talk, I will sketch the proof of their cohomological result and explain how it settled the class field tower problem.

Mon, 09 Dec 2019

16:00 - 17:00
C1

TBA

Alyosha Latyntsev
(Oxford)
Mon, 02 Dec 2019

16:00 - 17:00
C1

What the L! The surprising world of L-functions

George Robinson
(Oxford)
Abstract

L-functions have become a vital part of modern number theory over the past century, allowing comparisons between arithmetic objects with seemingly very different properties. In the first part of this talk, I will give an overview of where they arise, their properties, and the mathematics that has developed in order to understand them. In the second part, I will give a sketch of the beautiful result of Herbrand-Ribet concerning the arithmetic interpretations of certain special values of the Riemann zeta function, the prototypical example of an L-function.

Mon, 25 Nov 2019

16:00 - 17:00
C1

When shifted primes do not occur in difference sets

Zoe Wang
(Oxford)
Abstract

Let $[N] = \{1,..., N\}$ and let $A$ be a subset of $[N]$. A result of Sárközy in 1978 showed that if the difference set $A-A = \{ a - a’: a, a’ \in A\}$ does not contain any number which is one less than a prime, then $A = o(N)$. The quantitative upper bound on $A$ obtained from Sárközy’s proof has be improved subsequently by Lucier, and by Ruzsa and Sanders. In this talk, I will discuss my work on this problem. I will give a brief introduction of the iteration scheme and the Hardy-Littlewood method used in the known proofs, and our major arc estimate which leads to an improved bound.

Mon, 18 Nov 2019

16:00 - 17:00
C1

Erdős' primitive set conjecture

Jared Duker Lichtman
(Oxford)
Abstract

A subset of the integers larger than 1 is called $\textit{primitive}$ if no member divides another. Erdős proved in 1935 that the sum of $1/(n \log n)$ over $n$ in a primitive set $A$ is universally bounded for any choice of $A$. In 1988, he famously asked if this universal bound is attained by the set of prime numbers. In this talk we shall discuss some recent progress towards this conjecture and related results, drawing on ideas from analysis, probability, & combinatorics.

Tue, 10 Dec 2019

12:00 - 13:00
C1

Relationship between ideology and language in the Catalan independence context

Samuel Martin-Gutierrez
(Universidad Politécnica de Madrid)
Abstract

Political polarization generates strong effects on society, driving controversial debates and influencing the institutions. Territorial disputes are one of the most important polarized scenarios and have been consistently related to the use of language. In this work, we analyzed the opinion and language distributions of a particular territorial dispute around the independence of the Spanish region of Catalonia through Twitter data. We infer a continuous opinion distribution by applying a model based on retweet interactions, previously selecting a seed of elite users with fixed and antagonist opinions. The resulting distribution presents a mainly bimodal behavior with an intermediate third pole that appears spontaneously showing a less polarized society with the presence of not only antagonist opinions. We find that the more active, engaged and influential users hold more extreme positions. Also we prove that there is a clear relationship between political positions and the use of language, showing that against independence users speak mainly Spanish while pro-independence users speak Catalan and Spanish almost indistinctly. However, the third pole, closer in political opinion to the pro-independence pole, behaves similarly to the against-independence one concerning the use of language.

Ref: https://www.nature.com/articles/s41598-019-53404-x



 

Tue, 21 Jan 2020

12:00 - 13:00
C1

Generative models and representational learning on street networks

Mateo Neira
(University College London)
Abstract

Cities are now central to addressing global changes, ranging from climate change to economic resilience. There is a growing concern of how to measure and quantify urban phenomena, and one of the biggest challenges in quantifying different aspects of cities and creating meaningful indicators lie in our ability to extract relevant features that characterize the topological and spatial patterns of urban form. Many different models that can reproduce large-scale statistical properties observed in systems of streets have been proposed, from spatial random graphs to economical models of network growth. However, existing models fail to capture the diversity observed in street networks around the world. The increased availability of street network datasets and advancements in deep learning models present a new opportunity to create more accurate and flexible models of urban street networks, as well as capture important characteristics that could be used in downstream tasks.  We propose a simple approach called Convolutional-PCA (ConvPCA) for both creating low-dimensional representations of street networks that can be used for street network classification and other downstream tasks, as well as a generating new street networks that preserve visual and statistical similarity to observed street networks.

Link to the preprint

Mon, 11 Nov 2019

16:00 - 17:00
C1

On Serre's Uniformity Conjecture

Jay Swar
(Oxford)
Abstract

Given a prime p and an elliptic curve E (say over Q), one can associate a "mod p Galois representation" of the absolute Galois group of Q by considering the natural action on p-torsion points of E.

In 1972, Serre showed that if the endomorphism ring of E is "minimal", then there exists a prime P(E) such that for all p>P(E), the mod p Galois representation is surjective. This raised an immediate question (now known as Serre's uniformity conjecture) on whether P(E) can be bounded as E ranges over elliptic curves over Q with minimal endomorphism rings.

I'll sketch a proof of this result, the current status of the conjecture, and (time permitting) some extensions of this result (e.g. to abelian varieties with appropriately analogous endomorphism rings).

Subscribe to C1