Tue, 10 Mar 2020
16:00
C1

Pick's theorem and the Kadison-Singer problem

Michael Hartz
(University of Saarbrucken)
Abstract

Pick's theorem is a century-old theorem in complex analysis about interpolation with bounded analytic functions. The Kadison-Singer problem was a question about states on $C^*$-algebras originating in the work of Dirac on the mathematical description of quantum mechanics. It was solved by Marcus, Spielman and Srivastava a few years ago.

I will talk about Pick's theorem, the Kadison-Singer problem and how the two can be brought together to solve interpolation problems with infinitely many nodes. This talk is based on joint work with Alexandru Aleman, John McCarthy and Stefan Richter.

Tue, 03 Mar 2020
16:00
C1

Amenability, paradoxicality and uniform Roe algebras.

Fernando Lledo
(Madrid)
Abstract

There is a classical mathematical theorem (due to Banach and Tarski) that implies the following shocking statement: An orange can be divided into finitely many pieces, these pieces can be rotated and rearranged in such a way to yield two oranges of the same size as the original one. In 1929 J.~von Neumann recognizes that one of the reasons underlying the Banach-Tarski paradox is the fact that on the unit ball there is an action of a discrete subgroup of isometries that fails to have the property of amenability ("Mittelbarkeit" in German).

In this talk we will address more recent developments in relation to the dichotomy amenability vs. existence of paradoxical decompositions in different mathematical situations like, e.g., for metric spaces, for algebras and operator algebras. We will present a result unifying all these approaches in terms of a class of C*-algebras, the so-called uniform Roe algebras.

P. Ara, K. Li, F. Lledó and J. Wu, Amenability of coarse spaces and K-algebras , Bulletin of Mathematical Sciences 8 (2018) 257-306;
P. Ara, K. Li, F. Lledó and J. Wu, Amenability and uniform Roe algebras, Journal of Mathematical Analysis and Applications 459 (2018) 686-716;

Tue, 18 Feb 2020
16:00
C1

Quasi-locality and asymptotic expanders

Jan Spakula
(University of Southampton)
Abstract

Let $X$ be a countable discrete metric space, and think of operators on $\ell^2(X)$ in terms of their $X$-by-$X$ matrix. Band operators are ones whose matrix is supported on a "band" along the main diagonal; all norm-limits of these form a C*-algebra, called uniform Roe algebra of $X$. This algebra "encodes" the large-scale (a.k.a. coarse) structure of $X$. Quasi-locality, coined by John Roe in '88, is a property of an operator on $\ell^2(X)$, designed as a condition to check whether the operator belongs to the uniform Roe algebra (without producing band operators nearby). The talk is about our attempt to make this work, and an expander-ish condition on graphs that came out of trying to find a counterexample. (Joint with: A. Tikuisis, J. Zhang, K. Li and P. Nowak.)
 

Tue, 11 Feb 2020
16:00
C1

Fredholm theory and localisation on Banach spaces

Raffel Hagger
(University of Reading)
Abstract

Let $\mathcal{B}$ be a (unital) commutative Banach algebra and $\Omega$ the set of non-trivial multiplicative linear functionals $\omega : \mathcal{B} \to \mathbb{C}$. Gelfand theory tells us that the kernels of these functionals are exactly the maximal ideals of $\mathcal{B}$ and, as a consequence, an element $b \in \mathcal{B}$ is invertible if and only if $\omega(b) \neq 0$ for all $\omega \in \Omega$. A generalisation to non-commutative Banach algebras is the local principle of Allan and Douglas, also known as central localisation: Let $\mathcal{B}$ be a Banach algebra, $Z$ a closed subalgebra of the center of $\mathcal{B}$ and $\Omega$ the set of maximal ideals of $Z$. For every $\omega \in \Omega$ let $\mathcal{I}_{\omega}$ be the smallest ideal of $\mathcal{B}$ which contains $\omega$. Then $b \in \mathcal{B}$ is invertible if and only if $b + \mathcal{I}_{\omega}$ is invertible in $\mathcal{B} / \mathcal{I}_{\omega}$ for every $\omega \in \Omega$.

 

From an operator theory point of view, one of the most important features of the local principle is the application to Calkin algebras. In that case the invertible elements are called Fredholm operators and the corresponding spectrum is called the essential spectrum. Therefore, by taking suitable subalgebras, we can obtain a characterisation of Fredholm operators. Many beautiful results in spectral theory, e.g.~formulas for the essential spectrum of Toeplitz operators, can be obtained in this way. However, the central localisation is often not sufficient to provide a satisfactory characterisation for more general operators. In this talk we therefore consider a generalisation where the ideals $\mathcal{I}_{\omega}$ do not originate from the center of the algebra. More precisely, we will start with general $L^p$-spaces and apply limit operator methods to obtain a Fredholm theory that is applicable to many different settings. In particular, we will obtain characterisations of Fredholmness and compactness in many new cases and also rediscover some classical results.

 

This talk is based on joint work with Christian Seifert.

Tue, 04 Feb 2020
16:00
C1

Lipschitz spaces from the semigroup language point of view

Marta de Leon Contreaas
(University of Reading)
Abstract

 Lipschitz (or H\"older) spaces $C^\delta, \, k< \delta <k+1$, $k\in\mathbb{N}_0$, are the set of functions that are more regular than the $\mathcal{C}^k$ functions and less regular than the $\mathcal{C}^{k+1}$ functions. The classical definitions of H\"older classes involve  pointwise conditions for the functions and their derivatives.  This implies that to prove   regularity results for an operator among these spaces  we need its pointwise expression.  In many cases this can be a rather involved formula, see for example the expression of $(-\Delta)^\sigma$  in (Stinga, Torrea, Regularity Theory for the fractional harmonic oscilator, J. Funct. Anal., 2011.)

In  the 60's of last century, Stein and Taibleson, characterized bounded H\"older functions via some integral estimates of the Poisson semigroup, $e^{-y\sqrt{-\Delta}},$ and of  the Gauss semigroup, $e^{\tau{\Delta}}$. These kind of semigroup descriptions allow to obtain regularity results for fractional operators in these spaces in a more direct way.

 In this talk we shall see that we can characterize H\"older spaces adapted to other differential operators $\mathcal{L}$ by means of semigroups and that these characterizations will allow us to prove the boundedness of some fractional operators, such as $\mathcal{L}^{\pm \beta}$, Riesz transforms or Bessel potentials, avoiding the long, tedious and cumbersome computations that are needed when the pointwise expressions are handled.

Tue, 11 Feb 2020

12:00 - 13:00
C1

The modelling power of random graphs

Ivan Kryven
(Universiteit Utrecht)
Abstract

Random graphs were introduced as a convenient example for demonstrating the impossibility of ‘complete disorder’ by Erdos, who also thought that these objects will never become useful in the applied areas outside of pure mathematics. In this talk, I will view random graphs as objects in the field of applied mathematics and discus how the application-driven objectives have set new directions for studying random graphs. I will focus on characterising the sizes of connected components in graphs with a given degree distribution, on the percolation-like processes on such structures, and on generalisations to the coloured graphs. These theoretical questions have interesting implications for studying resilience of networks with nontrivial structures, and for materials science where they explain kinetics-driven phase transitions. Even more surprisingly, the results reveal intricate connections between random graphs and non-linear partial differential equations indicating new possibilities for their analysis.

Tue, 03 Mar 2020

12:00 - 13:00
C1

Dynamic approaches to measure heterogeneity in spatial networks

Vincenzo Nicosia
(Queen Mary University)
Abstract

Spatial networks are often the most natural way to represent spatial information of different kinds. One of the outstanding problems in current spatial network research is to effectively quantify the heterogeneity of the discrete-valued spatial distributions underlying a spatial graph. In this talk we will presentsome recent alternative approaches to estimate heterogeneity in spatial networks based on simple dynamical processes running on them.

Mon, 10 Jun 2019

16:00 - 17:00
C1

The Golod-Shafarevich Theorem: Endgame

Jay Swar
(Oxford)
Abstract

The principal ideal theorem (1930) guaranteed that any number field K would embed into a finite extension, called the Hilbert class field of K, in which every ideal of the original field became principal -- however the Hilbert class field itself will not necessarily have class number 1. The class field tower problem asked whether iteratively taking Hilbert class fields must stabilize after finitely many steps. In 1964, it was finally answered in the negative by Golod and Shafarevich who produced infinitely many examples and pioneered the framework that is still the most common setting for deciding when a number field will have an infinite class field tower.

In this talk, I will finish the proof of their cohomological result and thus fully justify how it settled the class field tower problem.

Mon, 03 Jun 2019

16:00 - 17:00
C1

The Golod-Shafarevich Theorem

Jay Swar
(Oxford)
Abstract

The principal ideal theorem (1930) ascertained that any number field K embeds into a finite extension, called the Hilbert class field of K, in which every ideal of the original field became principal -- however the Hilbert class field itself will not necessarily have class number 1. The class field tower problem asked whether iteratively taking Hilbert class fields must stabilize after finitely many steps. In 1964, it was finally answered in the negative by Golod and Shafarevich who produced infinitely many examples and pioneered the framework that is still the most common setting for deciding when a number field will have an infinite class field tower.

In this talk, I will sketch the proof of their cohomological result and explain how it settled the class field tower problem.

Mon, 09 Dec 2019

16:00 - 17:00
C1

TBA

Alyosha Latyntsev
(Oxford)
Subscribe to C1