Mon, 26 Oct 2015

16:00 - 17:00
C2

Some ideas on rational/integral points on algebraic curves

Junghwan Lim
(Oxford)
Abstract

I will introduce classical results on finiteness theorem with a way of connecting them to idea of covering spaces. I will talk about the proof of FLT under this connection.

Mon, 19 Oct 2015

16:00 - 17:00
C2

Algebraic Automorphic Forms and the Langlands Program

Benjamin Green
(Oxford)
Abstract

In this talk I will define algebraic automorphic forms, first defined by Gross, which are objects that are conjectured to have Galois representations attached to them. I will explain how this fits into the general picture of the Langlands program and, giving some examples, briefly describe one method of proving certain cases of the conjecture. 

Tue, 16 Jun 2015

17:00 - 18:00
C2

Growth of homology torsion in residually finite groups

Nikolay Nikolov
(Oxford)
Abstract

I will report on recent progress towards understanding the growth of the torsion of the homology of subgroups of finite index in a given residually finite group G.

The cases I will consider are when G is amenable (joint work with P, Kropholler and A. Kar) and when G is right angled (joint work with M. Abert and T. Gelander).

Thu, 11 Jun 2015

16:00 - 17:00
C2

What is bubbling?

Roland Grinis
(Oxford)
Abstract

I plan to discuss finite time singularities for the harmonic map heat flow and describe a beautiful example of winding behaviour due to Peter Topping.

Tue, 19 May 2015

17:00 - 18:00
C2

Diagonalizable algebras of operators on infinite-dimensional vector spaces

Manuel Reyes
(Bowdoin)
Abstract

Given a vector space V over a field K, let End(V) denote the algebra of linear endomorphisms of V. If V is finite-dimensional, then it is well-known that the diagonalizable subalgebras of End(V) are characterized by their internal algebraic structure: they are the subalgebras isomorphic to K^n for some natural number n. 

In case V is infinite dimensional, the diagonalizable subalgebras of End(V) cannot be characterized purely by their internal algebraic structure: one can find diagonalizable and non-diagonalizable subalgebras that are isomorphic.  I will explain how to characterize the diagonalizable subalgebras of End(V) as topological algebras, using a natural topology inherited from End(V).  I will also illustrate how this characterization relates to an infinite-dimensional Wedderburn-Artin theorem that characterizes "topologically semisimple" algebras.

Mon, 18 May 2015

16:00 - 17:00
C2

A Survey of Results on the Section Conjecture

Michael Tyler
(Exeter)
Abstract

After some generalities on étale fundamental groups and anabelian geometry, I will explore some of the current results on the section conjecture, including those of Koenigsmann and Pop on the birational section conjecture, and a recent unpublished result of Mohamed Saidi which reduces the section conjecture for finitely generated fields over the rationals to the case of number fields.

Mon, 08 Jun 2015

16:00 - 17:00
C2

Diophantine geometry over function fields

Netan Dogra
(Oxford)
Abstract

Many hard problems in Diophantine geometry have analogues over function fields which are less hard. I will give some examples.

Subscribe to C2