Tue, 12 May 2015

17:00 - 18:00
C2

Permutation groups, primitivity and derangements

Tim Burness
(Bristol)
Abstract

Let G be a transitive permutation group. If G is finite, then a classical theorem of Jordan implies the existence of fixed-point-free elements, which we call derangements. This result has some interesting and unexpected applications, and it leads to several natural problems on the abundance and order of derangements that have been the focus of recent research. In this talk, I will discuss some of these related problems, and I will report on recent joint work with Hung Tong-Viet on primitive permutation groups with extremal derangement properties.

Thu, 12 Mar 2015

16:00 - 17:00
C2

Multiplicative quiver varieties and their quantizations

Iordan Ganev
(University of Texas at Austin)
Abstract

Quiver varieties and their quantizations feature prominently in
geometric representation theory. Multiplicative quiver varieties are
group-like versions of ordinary quiver varieties whose quantizations
involve quantum groups and $q$-difference operators. In this talk, we will
define and give examples of representations of quivers, ordinary quiver
varieties, and multiplicative quiver varieties. No previous knowledge of
quivers will be assumed. If time permits, we will describe some phenomena
that occur when quantizing multiplicative quiver varieties at a root of
unity, and work-in-progress with Nicholas Cooney.

Wed, 11 Mar 2015
16:00
C2

Period 1 implies chaos … sometimes

Dr Good
(Birmingham)
Abstract

Abstract: Joint work with Syahida Che Dzul-Kifli

 

Let $f:X\to X$ be a continuous function on a compact metric space forming a discrete dynamical system. There are many definitions that try to capture what it means for the function $f$ to be chaotic. Devaney’s definition, perhaps the most frequently cited, asks for the function $f$ to be topologically transitive, have a dense set of periodic points and is sensitive to initial conditions.  Bank’s et al show that sensitive dependence follows from the other two conditions and Velleman and Berglund show that a transitive interval map has a dense set of periodic points.  Li and Yorke (who coined the term chaos) show that for interval maps, period three implies chaos, i.e. that the existence of a period three point (indeed of any point with period having an odd factor) is chaotic in the sense that it has an uncountable scrambled set.

 

The existence of a period three point is In this talk we examine the relationship between transitivity and dense periodic points and look for simple conditions that imply chaos in interval maps. Our results are entirely elementary, calling on little more than the intermediate value theorem.

Thu, 05 Mar 2015

16:00 - 17:00
C2

Introduction to deformation quantization

Pavel Safronov
(Oxford)
Abstract

I will explain the basics of deformation quantization of Poisson
algebras (an important tool in mathematical physics). Roughly, it is a
family of associative algebras deforming the original commutative
algebra. Following Fedosov, I will describe a classification of
quantizations of (algebraic) symplectic manifolds.
 

Wed, 18 Feb 2015

16:00 - 17:00
C2

Self-maps on compact F-spaces.

Max Pitz
(Oxford University)
Abstract
Compact F-spaces play an important role in the area of compactification theory, the prototype being w*, the Stone-Cech remainder of the integers. Two curious topological characteristics of compact F-spaces are that they don’t contain convergent sequences (apart from the constant ones), and moreover, that they often contain points that don’t lie in the boundary of any countable subset (so-called weak P-points). In this talk we investigate the space of self-maps S(X) on compact zero-dimensional F-spaces X, endowed with the compact-open topology. A natural question is whether S(X) reflects properties of the ground space X. Our main result is that for zero-dimensional compact F-spaces X, also S(X) doesn’t contain convergent sequences. If time permits, I will also comment on the existence of weak P-points in S(X). This is joint work with Richard Lupton.
Thu, 26 Feb 2015

16:00 - 17:00
C2

On Weyl's Problem of Isometric Embedding

Siran Li
(Oxford)
Abstract

In this talk I shall discuss some classical results on isometric embedding of positively/nonegatively curved surfaces into $\mathbb{R}^3$. 

    The isometric embedding problem has played a crucial role in the development of geometric analysis and nonlinear PDE techniques--Nash invented his Nash-Moser techniques to prove the embeddability of general manifolds; later Gromov recast the problem into his ``h-Principle", which recently led to a major breakthrough by C. De Lellis et al. in the analysis of Euler/Navier-Stokes. Moreover, Nirenberg settled (positively) the Weyl Problem: given a smooth metric with strictly positive Gaussian curvature on a closed surface, does there exist a global isometric embedding into the Euclidean space $\mathbb{R}^3$? This work is proved by the continuity method and based on the regularity theory of the Monge-Ampere Equation, which led to Cheng-Yau's renowned works on the Minkowski Problem and the Calabi Conjecture. 

    Today we shall summarise Nirenberg's original proof for the Weyl problem. Also, we shall describe Hamilton's simplified proof using Nash-Moser Inverse Function Theorem, and Guan-Li's generalisation to the case of nonnegative Gaussian curvature. We shall also mention the status-quo of the related problems.

Thu, 12 Feb 2015

16:00 - 17:00
C2

Introduction to conformal symmetry

Agnese Bissi
(Oxford)
Abstract

 In this talk I will present a basic introduction to conformal symmetry from a physicist perspective. I will talk about infinitesimal and finite conformal transformations and the conformal group in diverse dimensions. 

Thu, 05 Feb 2015

16:00 - 17:00
C2

G-Higgs bundles, mirror symmetry and Langlands duality

Lucas Branco
(Oxford)
Abstract

The moduli space of G-Higgs bundles carries a natural Hyperkahler structure, through which we can study Lagrangian subspaces (A-branes) or holomorphic subspaces (B-branes) with respect to each structure. Notably, these A and B-branes have gained significant attention in string theory.

We shall begin the talk by first introducing G-Higgs bundles for reductive Lie groups and the associated Hitchin fibration, and sketching how to realize Langlands duality through spectral data. We shall then look at particular types of branes (BAA-branes) which correspond to very interesting geometric objects, hyperholomorphic bundles (BBB-branes). 

The presentation will be introductory and my goal is simply to sketch some of the ideas relating these very interesting areas. 

Thu, 29 Jan 2015

16:00 - 17:00
C2

Simple Homotopy Theory and the Poincaré Conjecture

Robert Kropholler
(Oxford)
Abstract

I will introduce simple homotopy theory and then discuss relations between some conjectures in 2 dimensional simple homotopy theory and the 3 and 4 dimensional Poincaré conjectures.

Subscribe to C2