Mon, 03 Nov 2014

16:00 - 17:00
C2

The Distribution of Prime Gaps

James Maynard
(Oxford)
Abstract

Cramer conjectured a random model for the distribution of the primes, which would suggest that, on the scale of the average prime gap, the primes can be modelled by a Poisson process. In particular, the set of limit points of normalized prime gaps would be the whole interval $[0,\infty)$. I will describe joint work with Banks and Freiberg which shows that at least 1/8 of the positive reals are in the set of limit points. 

Wed, 22 Oct 2014
16:00
C2

Algebraic characterisation of convergence

Robert Leek
(Oxford)
Abstract
 
Using an internal characterisation of radiality or
> Fréchet-Urysohness, we can translate this property into other structural
> forms for many problems and classes of spaces. In this talk, I will
> recap this internal characterisation and translate the properties of
> being radial / Fréchet-Urysohn (Stone-Čech, Hewitt) into the prime ideal
> structure on C*(X) / C(X) for Tychonoff spaces, with a view to reaching
> out to other parts of algebra, e.g. C*-algebras, algebraic geometry, etc.
Mon, 17 Nov 2014

16:00 - 17:00
C2

Grothendieck Duality through Modern Methods

Alex Betts
(Oxford)
Abstract
We give an overview of Amnon Neeman's proof of Grothendieck's duality, working in the unbounded derived category and constructing the exceptional inverse image functor by appealing to an abstract adjoint functor theorem. The focus will be on developing the theory of the unbounded derived category and Spaltenstein's techniques for applying this theory in the algebro-geometric framework.
Tue, 11 Nov 2014
17:00
C2

On computing homology gradients over finite fields

Lukasz Grabowski
(Warwick)
Abstract

 Recently several conjectures about l2-invariants of
CW-complexes have been disproved. At the heart of the counterexamples
is a method of computing the spectral measure of an element of the
complex group ring. We show that the same method can be used to
compute the finite field analog of the l2-Betti numbers, the homology
gradient. As an application we point out that (i) the homology
gradient over any field of characteristic different than 2 can be an
irrational number, and (ii) there exists a CW-complex whose homology
gradients over different fields have infinitely many different values.
 

Tue, 28 Oct 2014

17:00 - 18:00
C2

Ziegler spectra of domestic string algebras

Mike Prest
(Manchester)
Abstract

Note: joint with Algebra seminar.

String algebras are tame - their finite-dimensional representations have been classified - and the Auslander-Reiten quiver of such an algebra shows some of the morphisms between them.  But not all.  To see the morphisms which pass between components of the Auslander-Reiten quiver, and so obtain a more complete picture of the category of representations, we should look at certain infinite-dimensional representations and use ideas and techniques from the model theory of modules.

This is joint work with Rosie Laking and Gena Puninski:
G. Puninski and M. Prest,  Ringel's conjecture for domestic string algebras, arXiv:1407.7470;
R. Laking, M. Prest and G. Puninski, Krull-Gabriel dimension of domestic string algebras, in preparation.

Thu, 27 Nov 2014

16:00 - 17:00
C2

Lagrangian Floer theory

Lino Campos
(Oxford University)
Abstract

Lagrangian Floer cohomology categorifies the intersection number of (half-dimensional) Lagrangian submanifolds of a symplectic manifold. In this talk I will describe how and when can we define Lagrangian Floer cohomology. In the case when Floer cohomology cannot be defined I will describe an alternative invariant known as the Fukaya (A-infinity) algebra.

Thu, 20 Nov 2014

16:00 - 17:00
C2

Cancelled

Felix Tennie
(Oxford University)
Thu, 30 Oct 2014

16:00 - 17:00
C2

Finiteness properties of Kähler groups

Claudio Llosa
(Oxford University)
Abstract

In this talk we want to discuss results by Dimca, Papadima, and Suciu about the finiteness properties of Kähler groups. Namely, we will sketch their proof that for every $2\leq n\leq \infty$ there is a Kähler group with finiteness property $\mathcal{F}_n$, but not $FP_{n+1}$. Their proof is by explicit construction of examples. These examples all arise as subgroups of finite products of surface groups and they are the first known examples of Kähler groups with arbitrary finiteness properties. The talk does not require any prior knowledge of finiteness properties or of Kähler groups.

Thu, 23 Oct 2014

16:00 - 17:00
C2

Manifolds of positive curvature

Alejandro Betancourt
(Oxford University)
Abstract

Historically, the study of positively curved manifolds has always been challenging. There are many reasons for this, but among them is the fact that the existence of a metric of positive curvature on a manifold imposes strong topological restrictions. In this talk we will discuss some of these topological implications and we will introduce the main results in this area. We will also present some recent results that relate positive curvature to the smooth structure of the manifold.

Subscribe to C2