Thu, 16 Oct 2014

16:00 - 17:00
C2

Yau's Proof of the Calabi Conjecture

Roland Grinis
(Oxford University)
Abstract

The Calabi conjecture, posed in 1954 and proved by Yau in 1976, guaranties the existence of Ricci-flat Kahler metrics on compact Kahler manifolds with vanishing first Chern class, providing examples of the so called Calabi-Yau manifolds. The latter are of great importance to the fields of Riemannian Holonomy Groups, having Hol0 as a subgroup of SU; Calibrated Geometry, more precisely Special Lagrangian Geometry; and to String theory with the discovery of the phenomenon of Mirror Symmetry (to mention a few!). In the talk, we will discuss the necessary background to formulate the Calabi conjecture and explain some of the main ideas behind its proof by Yau, which itself is a jewel from the point of view of non-linear PDEs.

Mon, 10 Nov 2014

16:00 - 17:00
C2

Tropical Jacobians

Jan Vonk
(Oxford)
Abstract

We will discuss Raynaud's classical theory on Néron models of Jacobians of curves, and mention some tropical aspects of the theory that help us understand modular curves from a modern non-Archimedean viewpoint. There will be an annoyingly large number of examples illustrating the key principles throughout. 

Mon, 27 Oct 2014

16:00 - 17:00
C2

Systems of many forms

Simon Rydin Myerson
(Oxford)
Abstract

Consider a nonsingular projective variety $X$ defined by a system of $R$ forms of the same degree $d$. The circle method proves the Hasse principle and Manin's conjecture for $X$ when $\text{dim}X > C(d,R)$. I will describe how to improve the value of $C$ when $R$ is large. I use a technique for estimating mean values of exponential sums which I call a ``moat lemma". This leads to a novel and intriguing system of auxiliary inequalities.

 

Mon, 20 Oct 2014

16:00 - 17:00
C2

Galois Theory and the S-unit Equation

Netan Dogra
(Oxford)
Abstract
For a finite set of primes S, the S-unit equation asks for solutions to a+b=1, with
a and b rational numbers which are units at all primes not in S. By a theorem of Siegel,
for any given S this equation will only have finitely many solutions. This talk will review
the relation between this equation and other Diophantine problems, and will explain a
Galois-theoretic approach to proving Siegel's theorem.
Tue, 25 Nov 2014

17:00 - 18:00
C2

On universal right angled Artin groups

Ashot Minasyan
(Southampton)
Abstract
A right angled Artin group (RAAG), also called a graph group or a partially commutative group, is a group which has a finite presentation where 
the only permitted defining relators are commutators of the generators. These groups and their subgroups play an important role in Geometric Group Theory, especially in view of the recent groundbreaking results of Haglund, Wise, Agol, and others, showing that many groups possess finite index subgroups that embed into RAAGs.
In their recent work on limit groups over right angled Artin groups, Casals-Ruiz and Kazachkov asked whether for every natural number n there exists a single "universal" RAAG, A_n, containing all n-generated subgroups of RAAGs. Motivated by this question, I will discuss several results showing that "universal" (in various contexts) RAAGs generally do not exist. I will also mention some positive results about universal groups for finitely presented n-generated subgroups of direct products of free and limit groups.
Tue, 28 Oct 2014

17:00 - 18:00
C2

Ziegler spectra of domestic string algebras

Mike Prest
(Manchester)
Abstract

String algebras are tame - their finite-dimensional representations have been classified - and the Auslander-Reiten quiver of such an algebra shows some of the morphisms between them.  But not all.  To see the morphisms which pass between components of the Auslander-Reiten quiver, and so obtain a more complete picture of the category of representations, we should look at certain infinite-dimensional representations and use ideas and techniques from the model theory of modules.

This is joint work with Rosie Laking and Gena Puninski:
G. Puninski and M. Prest,  Ringel's conjecture for domestic string algebras, arXiv:1407.7470;
R. Laking, M. Prest and G. Puninski, Krull-Gabriel dimension of domestic string algebras, in preparation.

Subscribe to C2