Tue, 04 Jun 2019

12:45 - 14:00
C3

Multiple scales analysis of a conductive-radiative thermal transfer model

Caoimhe Rooney
(University of Oxford)
Abstract


Multiple scales analysis is a powerful asymptotic technique for problems where the solution depends on two scales of widely different sizes. Standard multiple scales involves the introduction of a macroscale and microscale which are assumed to be independent. A common (and usually acceptable) assumption is that when considering behaviour on the microscale, the macroscale variable can be taken as constant, however there are instances where this assumption is not valid. In this talk, I will explain one such situation, that is, when considering conductive-radiative thermal transfer within a solid matrix with spherical perforations and discuss the appropriate measures when converting the radiative boundary condition into multiple-scales form.
 

Tue, 21 May 2019

12:45 - 14:00
C3

Optimising the parallel picking strategy for a Besi component wafer

Jonathan Grant-Peters
(University of Oxford)
Abstract

The time bottleneck in the manufacturing process of Besi (company involved in ESGI 149 Innsbruck) is the extraction of undamaged dies from a component wafer. The easiest way for them to speed up this process is to reduce the number of 'selections' made by the robotic arm.  Each 'selection' made by this robotic arm can be thought of as choosing a 2x2 submatix of a large binary matrix, and editing the 1's in this submatrix to be 0's.  The quesiton is: what is the fewest number of 2x2 submatrices required to cover the full matrix, and how can we find this number. This problem can be solved exactly using integer programming methods, although this approach proves to be prohibitively expensive for realistic sizes. In this talk I will describe the approach taken by my team at EGSI 149, as well as directions for further improvement.

Tue, 07 May 2019
11:45
C3

When Zeno met Pontryagin: a curious phenomenon in optimal control

Davin Lunz
((Oxford University))
Further Information

 

 
Abstract

I plan to present a brief introduction to optimal control theory (no background knowledge assumed), and discuss a fascinating and oft-forgotten family of problems where the optimal control behaves very strangely; it changes state infinitely often in finite time. This causes havoc in practice, and even more so in the literature.
 

Tue, 05 Mar 2019

12:45 - 13:30
C3

Modelling Magnetically Targeted Stem Cell Delivery

Edwina Yeo
(Oxford University)
Abstract

The development of an effective method of targeting delivery of stem cells to the site of an injury is a key challenge in regenerative medicine. However, production of stem cells is costly and current delivery methods rely on large doses in order to be effective. Improved targeting through use of an external magnetic field to direct delivery of magnetically-tagged stem cells to the injury site would allow for smaller doses to be used.
We present a model for delivery of stem cells implanted with a fixed number of magnetic nanoparticles under the action of an external magnetic field. We examine the effect of magnet geometry and strength on therapy efficacy. The accuracy of the mathematical model is then verified against experimental data provided by our collaborators at the University of Birmingham.

Tue, 19 Feb 2019

12:45 - 13:30
C3

Model of a cycling coexistence of viral strains and a survival of the specialist

Anel Nurtay
Abstract

With growing population of humans being clustered in large cities and connected by fast routes more suitable environments for epidemics are being created. Topped by rapid mutation rate of viral and bacterial strains, epidemiological studies stay a relevant topic at all times. From the beginning of 2019, the World Health Organization publishes at least five disease outbreak news including Ebola virus disease, dengue fever and drug resistant gonococcal infection, the latter is registered in the United Kingdom.

To control the outbreaks it is necessary to gain information on mechanisms of appearance and evolution of pathogens. Close to all disease-causing virus and bacteria undergo a specialization towards a human host from the closest livestock or wild fauna of a shared habitat. Every strain (or subtype) of a pathogen has a set of characteristics (e.g. infection rate and burst size) responsible for its success in a new environment, a host cell in case of a virus, and with the right amount of skepticism that set can be framed as fitness of the pathogen. In our model, we consider a population of a mutating strain of a virus. The strain specialized towards a new host usually remains in the environment and does not switch until conditions get volatile. Two subtypes, wild and mutant, of the virus share a host. This talk will illustrate findings on an explicitly independent cycling coexistence of the two subtypes of the parasite population. A rare transcritical bifurcation of limit cycles is discussed. Moreover, we will find conditions when one of the strains can outnumber and eventually eliminate the other strain focusing on an infection rate as fitness of strains.

Tue, 05 Feb 2019

12:45 - 13:30
C3

A Boundary Layer Analysis for the Initiation of Reactive Shear Bands

Robert Timms
((Oxford University))
Abstract

Unintended low energy thermal or mechanical stimuli can lead to the accidental ignition of explosive materials. During such events, described as ‘insults’ in the literature, ignition of the explosive is caused by localised regions of high temperature known as ‘hot spots’. We develop a model which helps us to understand how highly localised shear deformation, so-called shear banding, acts as a mechanism for hot spot generation. Through a boundary layer analysis, we give a deeper insight into how the additional self heating caused by chemical reactions affects the initiation and development of shear bands,  and highlight the key physical properties which control this process.

Thu, 28 Feb 2019
16:00
C3

A biased view of GRT

Filip Zivanovic
(Oxford University)
Abstract

Standard representation theory transforms groups=algebra into vector spaces = (linear) algebra. The modern approach, geometric representation theory constructs geometric objects from algebra and captures various algebraic representations through geometric gadgets/invariants on these objects. This field started with celebrated Borel-Weil-Bott and Beilinson-Bernstein theorems but equally is in rapid expansion nowadays. I will start from the very beginnings of this field and try to get to the recent developments (time permitting).

Tue, 29 May 2018

12:00 - 13:00
C3

Towards an Integrated Understanding of Neural Networks

David Rolnick
(MIT)
Abstract


Neural networks underpin both biological intelligence and modern AI systems, yet there is relatively little theory for how the observed behavior of these networks arises. Even the connectivity of neurons within the brain remains largely unknown, and popular deep learning algorithms lack theoretical justification or reliability guarantees.  In this talk, we consider paths towards a more rigorous understanding of neural networks. We characterize and, where possible, prove essential properties of neural algorithms: expressivity, learning, and robustness. We show how observed emergent behavior can arise from network dynamics, and we develop algorithms for learning more about the network structure of the brain.

Tue, 05 Jun 2018

12:00 - 13:00
C3

Spambot detection and polarization analysis: evidence from the Italian election Twitter data

Carolina Becatti
(IMT School for Advanced Studies Lucca)
Abstract

Fake accounts detection and users’ polarization are two very well known topics concerning the social media sphere, that have been extensively discussed and analyzed, both in the academic literature and in everyday life. Social bots are autonomous accounts that are explicitly created to increase the number of followers of a target user, in order to inflate its visibility and consensus in a social media context. For this reason, a great variety of methods for their detection have been proposed and tested. Polarisation, also known as confirmation bias, is instead the common tendency to look for information that confirms one's preexisting beliefs, while ignoring opposite ones. Within this environment, groups of individuals characterized by the same system of beliefs are very likely to form. In the present talk we will first review part of the literature discussing both these topics. Then we will focus on a new dataset collecting tweets from the last Italian parliament elections in 2018 and some preliminary results will be discussed.

Tue, 22 May 2018

12:30 - 13:30
C3

Cascade-Recovery Dynamics on Complex Networks

Nanxin Wei
(Department of Mathematics, Imperial College London)
Abstract


Cascading phenomena are prevalent in natural and social-technical complex networks. We study the persistent cascade-recovery dynamics on random networks which are robust against small trigger but may collapse for larger one. It is observed that depending on the relative intensity of triggering and recovery, the network belongs one of the two dynamical phases: collapsing or active phase. We devise an analytical framework which characterizes not only the critical behaviour but also the temporal evolution of network activity in both phases. Results from agent-based simulations show good agreement with theoretical calculations. This work is an important attempt in understanding networked systems gradually evolving into a state of critical transition, with many potential applications.
 

Subscribe to C3