Wed, 09 Feb 2022

16:00 - 17:00
C3

Bieri-Neumann-Strebel invariants

Ismael Morales
(University of Oxford)
Abstract

The aim is introducing the Bieri-Neumann-Strebel invariants and showing some computations. These are geometric invariants of abstract groups that capture information about the finite generation of kernels of abelian quotients.

Mon, 07 Feb 2022
15:30
C3

Free-by-cyclic groups and their automorphisms

Naomi Andrew
(Southampton University)
Abstract

Free-by-cyclic groups are easy to define – all you need is an automorphism of F_n. Their properties (for example hyperbolicity, or relative hyperbolicity) depend on this defining automorphism, but not always transparently. I will introduce these groups and some of their properties, and connect some to properties of the defining automorphism. I'll then discuss some ideas and techniques we can use to understand their automorphisms, including finding useful actions on trees and relationships with certain subgroups of Out(F_n). (This is joint work with Armando Martino.)

Wed, 23 Feb 2022

16:00 - 17:00
C3

Detecting topological features in the boundary of a group

Joseph MacManus
(University of Oxford)
Abstract

The Gromov boundary of a hyperbolic group is a useful topological invariant, the properties of which can encode all sorts of algebraic information. It has found application to some algorithmic questions, such as finding finite splittings (Dahmani-Groves) and, more recently, computing JSJ-decompositions (Barrett). In this talk we will introduce the boundary of a hyperbolic group. We'll outline how one can approximate the boundary with "large spheres" in the Cayley graph, in order to search for topological features. Finally, we will also discuss how this idea is applied in the aforementioned results. 

Thu, 25 Nov 2021
11:30
C3

Relating Structure to Power

Samson Abramsky
(University College London)
Further Information

This is an in-person seminar.

Abstract

In this talk, we describe some recent work on applying tools from category theory in finite model theory, descriptive complexity, constraint satisfaction, and combinatorics.

The motivations for this work come from Computer Science, but there may be something of interest for model theorists and other logicians.

The basic setting involves studying the category of relational structures via a resource-indexed family of adjunctions with some process category - which unfolds relational structures into treelike forms, allowing natural resource parameters to be assigned to these unfoldings.

One basic instance of this scheme allows us to recover, in a purely structural, syntax-free way:

- the Ehrenfeucht-Fraisse game

- the quantifier rank fragments of first-order logic

- the equivalences on structures induced by (i) the quantifier rank fragments, (ii) the restriction to the existential-positive part, and (iii) the extension with counting quantifiers

- the combinatorial parameter of tree-depth (Nesetril and Ossona de Mendez).

Another instance recovers the k-pebble game, the finite-variable fragments, the corresponding equivalences, and the combinatorial parameter of treewidth.

Other instances cover modal, guarded and hybrid fragments, generalized quantifiers, and a wide range of combinatorial parameters.

This whole scheme has been axiomatized in a very general setting, of arboreal categories and arboreal covers.

Beyond this basic level, a landscape is beginning to emerge, in which structural features of the resource categories, adjunctions and comonads are reflected in degrees of logical and computational tractability of the corresponding languages.

Examples include semantic characterisation and preservation theorems, Lovasz-type results on  isomorphisms, and classification of constraint satisfaction problems.

Fri, 12 Nov 2021

14:00 - 15:00
C3

sl_2-triples in classical Lie algebras over fields of positive characteristic

Rachel Pengelly
(University of Birmingham)
Abstract

Let $K$ be an algebraically closed field. Given three elements of some Lie algebra over $K$, we say that these elements form an $sl_2$-triple if they generate a subalgebra which is a homomorphic image of $sl_2(K).$ In characteristic 0, the Jacobson-Morozov theorem provides a bijection between the orbits of nilpotent elements of the Lie algebra and the orbits of $sl_2$-triples. In this talk I will discuss the progress made in extending this result to fields of characteristic $p$. In particular, I will focus on the results in classical Lie algebras, which can be found as subsets of $gl_n(K)$.

Tue, 10 Mar 2020

12:45 - 14:00
C3

Multi-Objective Resource Allocation for Cognitive Radio Networks (An Exercise in Study Group Management)

Joseph Field
(Oxford University)
Abstract

In this talk we will discuss a problem that was worked on during MISGSA 2020, a Study Group held in January at The University of Zululand, South Africa.

We look at a communication network with two types of users - Primary users (PU) and Secondary users (SU) - such that we reduce the network to a set of overlapping sub-graphs consisting of SUs indexed by a specific PU. Within any given sub-graph, the PU may be communicating at a certain fixed frequency F. The respective SUs also wish to communicate at the same frequency F, but not at the expense of interfering with the PU signal. Therefore if the PU is active then the SUs will not communicate.

In an attempt to increase information throughput in the network, we instead allow the SUs to communicate at a different frequency G, which may or may not interfere with a different sub-graph PU in the network, leading to a multi-objective optimisation problem.

We will discuss not only the problem formulation and possible approaches for solving it, but also the pitfalls that can be easily fallen into during study groups.

Tue, 25 Feb 2020

12:45 - 14:00
C3

Automated quantitative myocardial perfusion MRI

Cian Scannell
(Kings College, London)
Abstract

Stress perfusion cardiac magnetic resonance (CMR) imaging has been shown to be highly accurate for the detection of coronary artery disease. However, a major limitation is that the accuracy of the visual assessment of the images is challenging and thus the accuracy of the diagnosis is highly dependent on the training and experience of the reader. Quantitative perfusion CMR, where myocardial blood flow values are inferred directly from the MR images, is an automated and user-independent alternative to the visual assessment.

This talk will focus on addressing the main technical challenges which have hampered the adoption of quantitative myocardial perfusion MRI in clinical practice. The talk will cover the problem of respiratory motion in the images and the use of dimension reduction techniques, such as robust principal component analysis, to mitigate this problem. I will then discuss our deep learning-based image processing pipeline that solves the necessary series of computer vision tasks required for the blood flow modelling and introduce the Bayesian inference framework in which the kinetic parameter values are inferred from the imaging data.

Tue, 11 Feb 2020

12:45 - 14:00
C3

Elastic deformations of a thin component moved by a robot

Oliver Bond
(Oxford University)
Abstract

Many manufacturing processes require the use of robots to transport parts around a factory line. Some parts, which are very thin (e.g. car doors)
are prone to elastic deformations as they are moved around by a robot. These should be avoided at all cost. A problem that was recently raised by
F.E.E. (Fleischmann Elektrotech Engineering) at the ESGI 158 study group in Barcelona was to ascertain how to determine the stresses of a piece when
undergoing a prescribed motion by a robot. We present a simple model using Kirschoff-Love theory of flat plates and how this can be adapted. We
outline how the solutions of the model can then be used to determine the stresses. 

Tue, 28 Jan 2020

12:45 - 14:00
C3

The combined modelling of tumour growth and its environment

Yusuf Al-Husaini
(Brookes University (Oxford))
Abstract

Numerous mathematical models have been proposed for modelling cancerous tumour invasion (Gatenby and Gawlinski 1996), angiogenesis (Owen et al 2008), growth kinetics (Wang et al 2009), response to irradiation (Gao et al 2013) and metastasis (Qiam and Akcay 2018). In this study, we attempt to model the qualitative behavior of growth, invasion, angiogenesis and fragmentation of tumours at the tissue level in an explicitly spatial and continuous manner in two dimensions. We simulate the effectiveness of radiation therapy on a growing tumour in comparison with immunotherapy and propose a novel framework based on vector fields for modelling the impact of interstitial flow on tumour morphology. The results of this model demonstrate the effectiveness of employing a system of partial differential equations along with vector fields for simulating tumour fragmentation and that immunotherapy, when applicable, is substantially more effective than radiation therapy.

Tue, 14 Jan 2020
16:00
C3

Structure theory for groupoid C*-algebras

Christian Bonicke
(University of Glasgow)
Abstract

C*-algebras constructed from topological groupoids allow us to study many interesting and a priori very different constructions
of C*-algebras in a common framework. Moreover, they are general enough to appear intrinsically in the theory. In particular, it was recently shown
by Xin Li that all C*-algebras falling within the scope of the classification program admit (twisted) groupoid models.
In this talk I will give a gentle introduction to this class of C*-algebras and discuss some of their structural properties, which appear in connection
with the classification program.
 

Subscribe to C3