Thu, 06 Jun 2024

11:00 - 12:00
C3

Demushkin groups of infinite rank in Galois theory

Tamar Bar-On
(University of Oxford)
Abstract
Demushkin groups play an important role in number theory, being the maximal pro-$p$ Galois groups of local fields containing a primitive root of unity of order $p$. In 1996 Labute presented a generalization of the theory for countably infinite rank pro-$p$ groups, and proved that the $p$-Sylow subgroups of the absolute Galois groups of local fields are Demushkin groups of infinite countable rank. These results were extended by Minac & Ware, who gave necessary and sufficient conditions for Demushkin groups of infinite countable rank to occur as absolute Galois groups.
In a joint work with Prof. Nikolay Nikolov, we extended this theory further to Demushkin groups of uncountable rank. Since for uncountable cardinals, there exists the maximal possible number of nondegenerate bilinear forms, the class of Demushkin groups of uncountable rank is much richer, and in particular, the groups are not determined completely by the same invariants as in the countable case.  
Additionally, inspired by the Elementary Type Conjecture by Ido Efrat and the affirmative solution to Jarden's Question, we discuss the possibility of a free product over an infinite sheaf of Demushkin groups of infinite countable rank to be realizable as an absolute Galois group, and give a necessary and sufficient condition when the free product is taken over a set converging to 1.
Thu, 16 May 2024

11:00 - 12:00
C3

Basics of Globally Valued Fields and density of norms

Michał Szachniewicz
(University of Oxford)
Abstract

I will report on a joint work with Pablo Destic and Nuno Hultberg, about some applications of Globally Valued Fields (GVFs) and I will describe a density result that we needed, which turns out to be connected to Riemann-Zariski and Berkovich spaces.

Thu, 09 May 2024

11:00 - 12:00
C3

Skolem problem for several matrices

Emmanuel Breuillard
(University of Oxford)
Abstract

I will present a recent work with G. Kocharyan, where we show the undecidability of the following two problems: given a finitely generated subgroup G of GL(n,Q), a) determine whether G has a non-identity element whose (i,j) entry is equal to zero, and b) determine whether the stabilizer of a given vector in G is non-trivial. Undecidability of problem b) answers a question of Dixon from 1985. The proofs reduce to the undecidability of the word problem for finitely presented groups.

Thu, 02 May 2024

11:00 - 12:00
C3

Difference fields with an additive character on the fixed field

Stefan Ludwig
(École Normale Supérieure )
Abstract

Motivated by work of Hrushovski on pseudofinite fields with an additive character we investigate the theory ACFA+ which is the model companion of the theory of difference fields with an additive character on the fixed field. Building on results by Hrushovski we can recover it as the characteristic 0-asymptotic theory of the algebraic closure of finite fields with the Frobenius-automorphism and the standard character on the fixed field. We characterise 3-amalgamation in ACFA+. As cosequences we obtain that ACFA+ is a simple theory, an explicit description of the connected component of the Kim-Pillay group and (weak) elimination of imaginaries. If time permits we present some results on higher amalgamation.

Thu, 07 Mar 2024

11:00 - 12:00
C3

Model theory of Booleanizations, products and sheaves of structures

Jamshid Derakhshan
(University of Oxford)
Abstract

I will talk about some model-theoretic properties of Booleanizations of theories, subdirect products of structures, and sheaves of structures. I will discuss a result of Macintyre from 1973 on model-completeness, and more recent results jointly with Ehud Hrushovski and with Angus Macintyre.

Thu, 29 Feb 2024

11:00 - 12:00
C3

Coherent group actions

Martin Bays
(University of Oxford)
Abstract

I will discuss aspects of some work in progress with Tingxiang Zou, in which we continue the investigation of pseudofinite sets coarsely respecting structures of algebraic geometry, focusing on algebraic group actions. Using a version of Balog-Szemerédi-Gowers-Tao for group actions, we find quite weak hypotheses which rule out non-abelian group actions, and we are applying this to obtain new Elekes-Szabó results in which the general position hypothesis is fully weakened in one co-ordinate.

Thu, 08 Feb 2024

11:00 - 12:00
C3

Model companions of fields with no points in hyperbolic varieties

Michal Szachniewicz
(University of Oxford)
Abstract

This talk is based on a joint work with Vincent Jinhe Ye. I will define various classes of hyperbolic varieties (Broody hyperbolic, algebraically hyperbolic, bounded, groupless) and discuss existence of model companions of classes of fields that exclude them. This is related to moduli spaces of maps to hyperbolic varieties and to the (open) question whether the above mentioned hyperbolicity notions are in fact equivalent.

Thu, 01 Feb 2024

11:00 - 12:00
C3

Non-archimedean equidistribution and L-polynomials of curves over finite fields

Francesco Ballini
(University of Oxford)
Abstract

Let q be a prime power and let C be a smooth curve defined over F_q. The number of points of C over the finite extensions of F_q are determined by the Zeta function of C, which can be written in the form P_C(t)/((1-t)(1-qt)), where P_C(t) is a polynomial of degree 2g and g is the genus of C; this is often called the L-polynomial of C. We use a Chebotarev-like statement (over function fields instead of Z) due to Katz in order to study the distribution, as C varies, of the coefficients of P_C(t) in a non-archimedean setting.

Thu, 15 Feb 2024

16:00 - 17:00
C3

Permutation matrices, graph independence over the diagonal, and consequences

Ian Charlesworth
(University of Cardiff)
Abstract

Often, one tries to understand the behaviour of non-commutative random variables or of von Neumann algebras through matricial approximations. In some cases, such as when appealing to the determinant conjecture or investigating the soficity of a group, it is important to find approximations by matrices with good algebraic conditions on their entries (e.g., being integers). On the other hand, the most common tool for generating asymptotic independence -- conjugating with random unitaries -- often destroys such delicate structure.

 I will speak on recent joint work with de Santiago, Hayes, Jekel, Kunnawalkam Elayavalli, and Nelson, where we investigate graph products (an interpolation between free and tensor products) and conjugation of matrix models by large structured random permutations. We show that with careful control of how the permutation matrices are chosen, we can achieve asymptotic graph independence with amalgamation over the diagonal matrices. We are able to use this fine structure to prove that strong $1$-boundedness for a large class of graph product von Neumann algebras follows from the vanishing of the corresponding first $L^2$-Betti number. The main idea here is to show that a version of the determinant conjecture holds as long as the individual algebras have generators with approximations by matrices with entries in the ring of integers of some finite extension of Q satisfying some conditions strongly reminiscent of soficity for groups.

 

Subscribe to C3