Basics of Globally Valued Fields and density of norms
Abstract
I will report on a joint work with Pablo Destic and Nuno Hultberg, about some applications of Globally Valued Fields (GVFs) and I will describe a density result that we needed, which turns out to be connected to Riemann-Zariski and Berkovich spaces.
Skolem problem for several matrices
Abstract
I will present a recent work with G. Kocharyan, where we show the undecidability of the following two problems: given a finitely generated subgroup G of GL(n,Q), a) determine whether G has a non-identity element whose (i,j) entry is equal to zero, and b) determine whether the stabilizer of a given vector in G is non-trivial. Undecidability of problem b) answers a question of Dixon from 1985. The proofs reduce to the undecidability of the word problem for finitely presented groups.
Difference fields with an additive character on the fixed field
Abstract
Motivated by work of Hrushovski on pseudofinite fields with an additive character we investigate the theory ACFA+ which is the model companion of the theory of difference fields with an additive character on the fixed field. Building on results by Hrushovski we can recover it as the characteristic 0-asymptotic theory of the algebraic closure of finite fields with the Frobenius-automorphism and the standard character on the fixed field. We characterise 3-amalgamation in ACFA+. As cosequences we obtain that ACFA+ is a simple theory, an explicit description of the connected component of the Kim-Pillay group and (weak) elimination of imaginaries. If time permits we present some results on higher amalgamation.
Logic Advanced Class (organisational meeting)
Abstract
We will decide on speakers for Trinity term 2024.
Model theory of Booleanizations, products and sheaves of structures
Abstract
I will talk about some model-theoretic properties of Booleanizations of theories, subdirect products of structures, and sheaves of structures. I will discuss a result of Macintyre from 1973 on model-completeness, and more recent results jointly with Ehud Hrushovski and with Angus Macintyre.
Coherent group actions
Abstract
I will discuss aspects of some work in progress with Tingxiang Zou, in which we continue the investigation of pseudofinite sets coarsely respecting structures of algebraic geometry, focusing on algebraic group actions. Using a version of Balog-Szemerédi-Gowers-Tao for group actions, we find quite weak hypotheses which rule out non-abelian group actions, and we are applying this to obtain new Elekes-Szabó results in which the general position hypothesis is fully weakened in one co-ordinate.
Model companions of fields with no points in hyperbolic varieties
Abstract
This talk is based on a joint work with Vincent Jinhe Ye. I will define various classes of hyperbolic varieties (Broody hyperbolic, algebraically hyperbolic, bounded, groupless) and discuss existence of model companions of classes of fields that exclude them. This is related to moduli spaces of maps to hyperbolic varieties and to the (open) question whether the above mentioned hyperbolicity notions are in fact equivalent.
Non-archimedean equidistribution and L-polynomials of curves over finite fields
Abstract
Let q be a prime power and let C be a smooth curve defined over F_q. The number of points of C over the finite extensions of F_q are determined by the Zeta function of C, which can be written in the form P_C(t)/((1-t)(1-qt)), where P_C(t) is a polynomial of degree 2g and g is the genus of C; this is often called the L-polynomial of C. We use a Chebotarev-like statement (over function fields instead of Z) due to Katz in order to study the distribution, as C varies, of the coefficients of P_C(t) in a non-archimedean setting.
Permutation matrices, graph independence over the diagonal, and consequences
Abstract
Often, one tries to understand the behaviour of non-commutative random variables or of von Neumann algebras through matricial approximations. In some cases, such as when appealing to the determinant conjecture or investigating the soficity of a group, it is important to find approximations by matrices with good algebraic conditions on their entries (e.g., being integers). On the other hand, the most common tool for generating asymptotic independence -- conjugating with random unitaries -- often destroys such delicate structure.
I will speak on recent joint work with de Santiago, Hayes, Jekel, Kunnawalkam Elayavalli, and Nelson, where we investigate graph products (an interpolation between free and tensor products) and conjugation of matrix models by large structured random permutations. We show that with careful control of how the permutation matrices are chosen, we can achieve asymptotic graph independence with amalgamation over the diagonal matrices. We are able to use this fine structure to prove that strong $1$-boundedness for a large class of graph product von Neumann algebras follows from the vanishing of the corresponding first $L^2$-Betti number. The main idea here is to show that a version of the determinant conjecture holds as long as the individual algebras have generators with approximations by matrices with entries in the ring of integers of some finite extension of Q satisfying some conditions strongly reminiscent of soficity for groups.