Thu, 13 Feb 2020
11:30
C4

Cardinal invariants and model-theoretic tree properties

Nick Ramsey
(Paris)
Abstract


 In Classification Theory, Shelah defined several cardinal invariants of a complete theory which detect the presence of certain trees among the definable sets, which in turn quantify the complexity of forking.  In later model-theoretic developments, local versions of these invariants were recognized as marking important dividing lines - e.g. simplicity and NTP2.  Around these dividing lines, a dichotomy theorem of Shelah states that a theory has the tree property if and only if it is witnessed in one of two extremal forms--the tree property of the first or second kind--and it was asked if there is a 'quantitative' analogue of this dichotomy in the form of a certain equation among these invariants.  We will describe these model-theoretic invariants and explain why the quantitative version of the dichotomy fails, via a construction that relies upon some unexpected tools from combinatorial set theory. 

 

Thu, 28 Nov 2019

11:30 - 12:30
C4

Actions of groups of finite Morley rank

Alexandre Borovik
(Manchester University)
Abstract

I will be talking of recent results by Ayse Berkman and myself, as well as about a more general program of research in this area.

Thu, 21 Nov 2019

11:30 - 12:30
C4

On NIP formulas in groups

Gabriel Conant
(Cambridge)
Abstract

I will present joint work with A. Pillay on the theory of NIP formulas in arbitrary groups, which exhibit a local formulation of the notion of finitely satisfiable generics (as defined by Hrushovski, Peterzil, and Pillay). This setting generalizes ``local stable group theory" (i.e., the study of stable formulas in groups) and also the case of arbitrary NIP formulas in pseudofinite groups. Time permitting, I will mention an application of these results in additive combinatorics.

Tue, 14 May 2019
11:30
C4

TBA

Anand Pillay
(University of Notre Dame)
Thu, 05 Dec 2019

11:30 - 12:30
C4

Universally defining finitely generated subrings of global fields

Nicolas Daans
(Antwerpen)
Abstract

   It is a long-standing open problem whether the ring of integers Z has an existential first-order definition in Q, the field of rational numbers. A few years ago, Jochen Koenigsmann proved that Z has a universal first-order definition in Q, building on earlier work by Bjorn Poonen. This result was later generalised to number fields by Jennifer Park and to global function fields of odd characteristic by Kirsten Eisenträger and Travis Morrison, who used classical machinery from number theory and class field theory related to the behaviour of quaternion algebras over global and local fields.


   In this talk, I will sketch a variation on the techniques used to obtain the aforementioned results. It allows for a relatively short and uniform treatment of global fields of all characteristics that is significantly less dependent on class field theory. Instead, a central role is played by Hilbert's Reciprocity Law for quaternion algebras. I will conclude with an example of a non-global set-up where the existence of a reciprocity law similarly yields universal definitions of certain subrings.

Thu, 31 Oct 2019
11:30
C4

Constructing geometries

Kobi Kremnitzer
(Oxford)
Abstract

In this talk I will explain a category theoretic perspective on geometry.  Starting with a category of local objects (of and algebraic nature), and a (Grothendieck) 
topology on it, one can define global objects such as schemes and stacks. Examples of this  approach are algebraic, analytic, differential geometries and also more exotic geometries  such as analytic and differential geometry over the integers and analytic geometry over  the field with one element. In this approach the notion of a point is not primary but is  derived from the local to global structure. The Zariski and Huber spectra are recovered  in this way, and we also get new spectra which might be of interest in model theory.

Thu, 07 Nov 2019
11:30
C4

Functional Modular Zilber-Pink with Derivatives

Vahagn Aslanyan
(UEA)
Abstract

I will present Pila's Modular Zilber-Pink with Derivatives (MZPD) conjecture, which is a Zilber-Pink type statement for the j-function and its derivatives, and discuss some weak and functional/differential analogues. In particular, I will define special varieties in each setting and explain the relationship between them. I will then show how one can prove the aforementioned weak/functional/differential MZPD statements using the Ax-Schanuel theorem for the j-function and its derivatives and some basic complex analytic geometry. Note that I gave a similar talk in Oxford last year (where I discussed a differential MZPD conjecture and proved it assuming an Existential Closedness conjecture for j), but this talk is going to be significantly different from that one (the approach presented in this talk will be mostly complex analytic rather than differential algebraic, and the results will be unconditional).

Tue, 20 Aug 2019

12:00 - 13:00
C4

Fitting In and Breaking Up: A Nonlinear Version of Coevolving Voter Models

Yacoub H. Kureh
(University of California Los Angeles)
Abstract

We investigate a nonlinear version of coevolving voter models, in which both node states and network structure update as a coupled stochastic dynamical process. Most prior work on coevolving voter models has focused on linear update rules with fixed rewiring and adopting probabilities. By contrast, in our nonlinear version, the probability that a node rewires or adopts is a function of how well it "fits in" within its neighborhood. To explore this idea, we incorporate a parameter σ that represents the fraction of neighbors of an updating node that share its opinion state. In an update, with probability σq (for some nonlinearity parameter q), the updating node rewires; with complementary probability 1−σq, the updating node adopts a new opinion state. We study this mechanism using three rewiring schemes: after an updating node deletes a discordant edge, it then either (1) "rewires-to-random" by choosing a new neighbor in a random process; (2) "rewires-to-same" by choosing a new neighbor in a random process from nodes that share its state; or (3) "rewires-to-none" by not rewiring at all (akin to "unfriending" on social media). We compare our nonlinear coevolving model to several existing linear models, and we find in our model that initial network topology can play a larger role in the dynamics, whereas the choice of rewiring mechanism plays a smaller role. A particularly interesting feature of our model is that, under certain conditions, the opinion state that is initially held by a minority of nodes can effectively spread to almost every node in a network if the minority nodes views themselves as the majority. In light of this observation, we relate our results to recent work on the majority illusion in social networks.

 

Reference: 

Kureh, Yacoub H., and Mason A. Porter. "Fitting In and Breaking Up: A Nonlinear Version of Coevolving Voter Models." arXiv preprint arXiv:1907.11608 (2019).

Subscribe to C4