13:30
Black Hole Chemistry, an introduction
Abstract
One recent(ish) development in classical black hole thermodynamics is the inclusion of vacuum energy (cosmological constant) in the form of thermodynamic pressure. New thermodynamic phase transitions emerge in this extended phase space, beyond the usual Hawking—Page transition. This allows us to understand black holes from the viewpoint of chemistry in terms of concepts such as Van Der Waals fluids, reentrant phase transitions and triple points. I will review these developments and discuss the dictionary between the bulk laws and those of the dual CFT.
16:00
Norm properties of tracially complete C*-algebras
Abstract
We discuss the trace problem and stable rank for tracialy complete C*-algebras
14:00
When is an operator system a C*-algebra?
Abstract
In the category of operator systems, identification comes via complete order isomorphisms, and so an operator system can be identified with a C*-algebra without itself being an algebra. So, when is an operator system a C*-algebra? This question has floated around the community for some time. From Choi and Effros, we know that injectivity is sufficient, but certainly not necessary outside of the finite-dimensional setting. In this talk, I will give a characterization in the separable nuclear setting coming from C*-encoding systems. This comes from joint work with Galke, van Lujik, and Stottmeister.
Homotopy in Cuntz classes of Z-stable C*-algebras
Abstract
The Cuntz semigroup of a C*-algebra is an ordered monoid consisting of equivalence classes of positive elements in the stabilization of the algebra. It can be thought of as a generalization of the Murray-von Neumann semigroup, and records substantial information about the structure of the algebra. Here we examine the set of positive elements having a fixed equivalence class in the Cuntz semigroup of a simple, separable, exact and Z-stable C*-algebra and show that this set is path connected when the class is non-compact, i.e., does not correspond to the class of a projection in the C*-algebra. This generalizes a known result from the setting of real rank zero C*-algebras.
17:00
Hilbert-Burch matrices and points on a plane
Abstract
The Hilbert scheme of d-points on a smooth surface is a well-studied object that still enjoys relatively large interest. We generalize Aldo Conca's Canonical Hilbert-Burch matrices and obtain explicit families of d-points. We show that such descriptions give us Białynicki-Birula cells of the Hilbert scheme for any choice of one-dimensional torus, thus describing the punctual component. This can be potentially applied to the study of singularities of the nested Hilbert scheme of points.
17:00
Gotzmann's persistence theorem for smooth projective toric varieties
Abstract
Gotzmann's regularity and persistence theorems provide tools which allow us to find explicit equations for the Hilbert scheme Hilb_P(P^n). A natural next step is to generalise these results to the multigraded Hilbert scheme Hilb_P(X) of a smooth projective toric variety X. In 2003 Maclagan and Smith generalise Gotzmann's regularity theorem to this case. We present new persistence type results for the product of two projective spaces, and time permitting discuss how these may be applied to a more general smooth projective toric variety.
14:30
Subleading structure of asymptotically-flat spacetimes
Abstract
In this talk I will explain how a dictionary between the Bondi-Sachs and the Newman-Penrose formalism can be used to organize the subleading data appearing in the metric for asymptotically-flat spacetimes. In particular, this can be used to show that the higher Bondi aspects can be traded for higher spin charges, and that the latter form a w_infinity algebra.
Fixation probability and suppressors of natural selection on higher-order networks
Abstract
Population structure substantially affects evolutionary dynamics. Networks that promote the spreading of fitter mutants are called amplifiers of selection, and those that suppress the spreading of fitter mutants are called suppressors of selection. It has been discovered that most networks are amplifiers under the so-called birth-death updating combined with uniform initialization, which is a common condition. We discuss constant-selection evolutionary dynamics with binary node states (which is equivalent to the biased voter model with two opinions in statistical physics research community) on higher-order networks, i.e., hypergraphs, temporal networks, and multilayer networks. In contrast to the case of conventional networks, we show that a vast majority of these higher-order networks are suppressors of selection, which we show by random-walk and Martingale analyses as well as by numerical simulations. Our results suggest that the modeling framework for structured populations in addition to the specific network structure is an important determinant of evolutionary dynamics.