Mon, 14 Oct 2024
13:30
C4

Black Hole Chemistry, an introduction

Christopher Couzens
Abstract

One recent(ish) development in classical black hole thermodynamics is the inclusion of vacuum energy (cosmological constant) in the form of thermodynamic pressure. New thermodynamic phase transitions emerge in this extended phase space, beyond the usual Hawking—Page transition. This allows us to understand black holes from the viewpoint of chemistry in terms of concepts such as Van Der Waals fluids, reentrant phase transitions and triple points. I will review these developments and discuss the dictionary between the bulk laws and those of the dual CFT.
 

Tue, 13 Aug 2024
14:00
C4

When is an operator system a C*-algebra?

Kristen Courtney
(University of Southern Denmark)
Abstract

In the category of operator systems, identification comes via complete order isomorphisms, and so an operator system can be identified with a C*-algebra without itself being an algebra. So, when is an operator system a C*-algebra? This question has floated around the community for some time. From Choi and Effros, we know that injectivity is sufficient, but certainly not necessary outside of the finite-dimensional setting. In this talk, I will give a characterization in the separable nuclear setting coming from C*-encoding systems. This comes from joint work with Galke, van Lujik, and Stottmeister.

Mon, 12 Aug 2024
16:00
C4

A topology on E-theory

Jose Carrion
(Texas Christian University)
Abstract
For separable C*-algebras A and B, we define a topology on the set [[A,B]] consisting of homotopy classes of asymptotic morphisms from A to B. This gives an enrichment of the Connes–Higson asymptotic category over topological spaces. We show that the Hausdorffization of this category is equivalent to the shape category of Dadarlat. As an application, we obtain a topology on the E-theory group E(A,B) with properties analogous to those of the topology on KK(A,B). The Hausdorffized E-theory group EL(A,B)  is also introduced and studied. We obtain a continuity result for the functor EL(- , B) which implies a new continuity result for the functor KL(-, B).
 
This is joint work with Christopher Schafhauser.
 
Tue, 16 Jul 2024

16:00 - 17:00
C4

Homotopy in Cuntz classes of Z-stable C*-algebras

Andrew Toms
(Purdue University)
Abstract

The Cuntz semigroup of a C*-algebra is an ordered monoid consisting of equivalence classes of positive elements in the stabilization of the algebra.  It can be thought of as a generalization of the Murray-von Neumann semigroup, and records substantial information about the structure of the algebra.  Here we examine the set of positive elements having a fixed equivalence class in the Cuntz semigroup of a simple, separable, exact and Z-stable C*-algebra and show that this set is path connected when the class is non-compact, i.e., does not correspond to the class of a projection in the C*-algebra.  This generalizes a known result from the setting of real rank zero C*-algebras.

Wed, 05 Jun 2024
17:00
C4

Hilbert-Burch matrices and points on a plane

Piotr Oszer
(University of Warsaw)
Abstract

The Hilbert scheme of d-points on a smooth surface is a well-studied object that still enjoys relatively large interest. We generalize Aldo Conca's Canonical Hilbert-Burch matrices and obtain explicit families of d-points. We show that such descriptions give us Białynicki-Birula cells of the Hilbert scheme for any choice of one-dimensional torus, thus describing the punctual component. This can be potentially applied to the study of singularities of the nested Hilbert scheme of points.

Thu, 30 May 2024
17:00
C4

Gotzmann's persistence theorem for smooth projective toric varieties

Patience Ablett
(Dept of Mathematics University of Warwick)
Abstract

Gotzmann's regularity and persistence theorems provide tools which allow us to find explicit equations for the Hilbert scheme Hilb_P(P^n). A natural next step is to generalise these results to the multigraded Hilbert scheme Hilb_P(X) of a smooth projective toric variety X. In 2003 Maclagan and Smith generalise Gotzmann's regularity theorem to this case. We present new persistence type results for the product of two projective spaces, and time permitting discuss how these may be applied to a more general smooth projective toric variety.

Fri, 31 May 2024
14:30
C4

Subleading structure of asymptotically-flat spacetimes

Marc Geiller
(ENS Lyon)
Abstract

In this talk I will explain how a dictionary between the Bondi-Sachs and the Newman-Penrose formalism can be used to organize the subleading data appearing in the metric for asymptotically-flat spacetimes. In particular, this can be used to show that the higher Bondi aspects can be traded for higher spin charges, and that the latter form a w_infinity algebra.

Tue, 21 May 2024

14:00 - 15:00
C4

Fixation probability and suppressors of natural selection on higher-order networks

Naoki Masuda
(The State University of New York at Buffalo)
Abstract

Population structure substantially affects evolutionary dynamics. Networks that promote the spreading of fitter mutants are called amplifiers of selection, and those that suppress the spreading of fitter mutants are called suppressors of selection. It has been discovered that most networks are amplifiers under the so-called birth-death updating combined with uniform initialization, which is a common condition. We discuss constant-selection evolutionary dynamics with binary node states (which is equivalent to the biased voter model with two opinions in statistical physics research community) on higher-order networks, i.e., hypergraphs, temporal networks, and multilayer networks. In contrast to the case of conventional networks, we show that a vast majority of these higher-order networks are suppressors of selection, which we show by random-walk and Martingale analyses as well as by numerical simulations. Our results suggest that the modeling framework for structured populations in addition to the specific network structure is an important determinant of evolutionary dynamics.
 

Subscribe to C4