Wed, 07 Feb 2018

16:00 - 17:00
C5

Flats in CAT(0) spaces

Sam Shepherd
(University of Oxford)
Abstract

CAT(0) spaces are defined as having triangles that are no fatter than Euclidean triangles, so it is no surprise that under special conditions  you find pieces of the Euclidean plane appearing in CAT(0) spaces. What is surprising though is how weak these special conditions seem to be. I will present some well known results of this phenomenon, along with detailed sketch proofs.

Wed, 31 Jan 2018

16:00 - 17:00
C5

Algebraic integers arising as stretch factors of surface homemorphisms

Mehdi Yazdi
(University of Oxford)
Abstract

I will talk about the properties of algebraic integers that can arise as stretch factors of pseudo-Anosoc maps. I will mention a conjecture of Fried on which numbers supposedly arise and Thurston’s theorem that proves a similar result in the context of automorphisms of free groups. Then I will talk about recent developments on the Fried conjecture namely, every Salem number has a power arising as a stretch factor. 

Thu, 08 Mar 2018
16:00
C5

TBA

Lawrence Barrott
(University of Cambridge)
Tue, 23 Jan 2018

12:45 - 13:30
C5

Water Wave Absorption

Helen Fletcher
(Oxford University)
Abstract

We are all familiar with the need for continuum mechanics-based models in physical applications. In this case, we are interested in large-scale water-wave problems, such as coastal flows and dam breaks.
When modelling these problems, we inevitably wish to solve them on a finite domain, and require boundary conditions to do so. Ideally, we would recreate the semi-infinite nature of a coastline by allowing any generated waves to flow out of the domain, as opposed to them reflecting off the far-field boundary and disrupting the remainder of our simulation. However, applying an appropriate boundary condition is not as straightforward as we might think.
In this talk, we aim to evaluate alternatives to so-called 'active boundary condition' absorption. We will derive a toy model of a shallow-water wavetank, and consider the implementation and efficacy of two 'passive' absorption techniques.
 

Thu, 22 Feb 2018
16:00
C5

Thick triangles and a theorem of Gromov

Matthias Wink
(Oxford University)
Abstract

A theorem of Gromov states that the number of generators of the fundamental group of a manifold with nonnegative 
curvature is bounded by a constant which only depends on the dimension of the manifold. The main ingredient 
in the proof is Toponogov’s theorem, which roughly speaking says that the triangles on spaces with positive 
curvature, such as spheres, are thick compared to triangles in the Euclidean plane. In the talk I shall explain 
this more carefully and deduce Gromov’s result.

Thu, 08 Feb 2018
16:00
C5

Symplectic reduction and geometric invariant theory

Maxence Mayrand
(Oxford University)
Abstract

I will explain a beautiful link between differential and algebraic geometry, called the Kempf-Ness Theorem, which says that the natural notions of "quotient spaces" in the symplectic and algebraic categories can often be identified. The result will be presented in its most general form where actions are not necessarily free and hence I will also introduce the notion of stratified spaces.

Thu, 01 Feb 2018
16:00
C5

The Reidemeister graphs (Joint work with Daniele Celoria)

Agnese Barbensi
(Oxford University)
Abstract

We describe a locally finite graph naturally associated to each knot type K, called the Reidemeister graph. We determine several local and global properties of this graph and prove that the graph-isomorphism type is a complete knot invariant up to mirroring. Lastly (time permitting), we introduce another object, relating the Reidemeister and Gordian graphs, and briefly present an application to the study of DNA.

Thu, 01 Mar 2018
16:00
C5

TBA

Emily Maw
(UCL London)
Tue, 28 Nov 2017

12:45 - 13:30
C5

Passive control of viscous flow via elastic snap-through

Michael Gomez
(Mathematical Institute)
Abstract

Snap-through buckling is a type of instability in which an elastic object rapidly jumps from one state to another, just as an umbrella flips upwards in a gust of wind. While snap-through under dry, mechanical loads has already been harnessed in engineering to generate fast motions between two states, the mechanisms underlying snapping in bulk fluid flows remain relatively unexplored. In this talk we demonstrate how elastic snap-through may be used to passively control fluid flows at low Reynolds number, in contrast to some pre-existing valves that rely on active control. We study viscous flow through a channel in which one of the bounding walls is an elastic arch. By performing experiments at the macroscopic scale, we show that snap-through of the arch rapidly changes the channel from a constricted to an unconstricted state, increasing the hydraulic conductivity by up to an order of magnitude. We also observe nonlinear pressure-flux characteristics away from snapping due to the coupling between the driving flow and elasticity. This behaviour is confirmed by a mathematical model that also shows the device may readily be scaled down for microfluidic applications. Finally, we demonstrate that such a device may be used to create a fluidic analogue of a fuse: the fluid flux through a channel may not rise above a given value. 

Subscribe to C5