Tue, 14 Nov 2017

12:45 - 13:30
C5

A Bio-inspired Design for a Switchable Elastocapillary Adhesive

Matt Butler
(Mathematical Institute, University of Oxford)
Abstract

Many species of insects adhere to vertical and inverted surfaces using footpads that secrete thin films of a mediating fluid. The fluid bridges the gap between the foot and the target surface. The precise role of this liquid is still subject to debate, but it is thought that the contribution of surface tension to the adhesive force may be significant. It is also known that the footpad is soft, suggesting that capillary forces might deform its surface. Inspired by these physical ingredients, we study a model problem in which a thin, deformable membrane under tension is adhered to a flat, rigid surface by a liquid droplet. We find that there can be multiple possible equilibrium states, with the number depending on the applied tension and aspect ratio of the system. The presence of elastic deformation significantly enhances the adhesion force compared to a rigid footpad. A mathematical model shows that the equilibria of the system can be controlled via two key parameters depending on the imposed separation of the foot and target surface, and the tension applied to the membrane. We confirm this finding experimentally and show that the system may transition rapidly between two states as the two parameters are varied. This suggests that different strategies may be used to adhere strongly and then detach quickly.

Wed, 08 Nov 2017

16:00 - 17:00
C5

When are two right angled Artin groups quasi-isometric?

Alexander Margolis
(University of Oxford)
Abstract

I will give a survey of known results about when two RAAGs are quasi-isometric, and will then describe a visual graph of groups decomposition of a RAAG (its JSJ tree of cylinders) that can often be used to determine whether or not two RAAGs are quasi-isometric.

Wed, 25 Oct 2017

16:00 - 17:00
C5

Trees, Lattices and Superrigidity

Elia Fioravanti
(University of Oxford)
Abstract

If $G$ is an irreducible lattice in a semisimple Lie group, every action of $G$ on a tree has a global fixed point. I will give an elementary discussion of Y. Shalom's proof of this result, focussing on the case of $SL_2(\mathbb{R}) \times SL_2(\mathbb{R})$. Emphasis will be placed on the geometric aspects of the proof and on the importance of reduced cohomology, while other representation theoretic/functional analytic tools will be relegated to a couple of black boxes.

Wed, 29 Nov 2017
16:00
C5

Classifying Higgs bundles, stable and unstable

Eloise Hamilton
(Oxford University)
Abstract

 The aim of this talk is to describe the classification problem for Higgs bundles and to explain how a combination of classical and Non-Reductive Geometric Invariant Theory might be used to solve this classification problem.
 
I will start by defining Higgs bundles and their physical origins. Then, I will present the classification problem for Higgs bundles. This will involve introducing the "stack" of Higgs bundles, a purely formal object which allows us to consider all isomorphism classes of Higgs bundles at once. Finally, I will explain how the stack of Higgs bundles can be described geometrically. As we will see, the stack of Higgs bundles can be decomposed into disjoint strata, each consisting of Higgs bundles of a given "instability type". Both classical and Non-Reductive GIT can then be applied to obtain moduli spaces for each of the strata.

Thu, 23 Nov 2017
16:00
C5

Operads with homological stability and infinite loop space structures

Tom Zeman
(Oxford University)
Abstract

In a recent preprint, Basterra, Bobkova, Ponto, Tillmann and Yeakel
defined operads with homological stability (OHS) and showed that after
group-completion, algebras over an OHS group-complete to infinite loop
spaces. This can in particular be used to put a new infinite loop space
structure on stable moduli spaces of high-dimensional manifolds in the
sense of Galatius and Randal-Williams, which are known to be infinite
loop spaces by a different method.

To complicate matters further, I shall introduce a mild strengthening of
the OHS condition and construct yet another infinite loop space
structure on these stable moduli spaces. This structure turns out to be
equivalent to that constructed by Basterra et al. It is believed that
the infinite loop space structure due to Galatius--Randal-Williams is
also equivalent to these two structures.

Thu, 16 Nov 2017
16:00
C5

The Einstein Equation on Manifolds with Large Symmetry Groups

Timothy Buttsworth
(The University of Queensland)
Abstract

In this talk I will discuss the problem of finding Einstein metrics in the homogeneous and cohomogeneity one setting. 
In particular, I will describe a recent result concerning existence of solutions to the Dirichlet problem for cohomogeneity one Einstein metrics.

Wed, 18 Oct 2017

16:00 - 17:00
C5

Conformal dimension

David Hume
(University of Oxford)
Abstract

I will present a gentle introduction to the theory of conformal dimension, focusing on its applications to the boundaries of hyperbolic groups, and the difficulty of classifying groups whose boundaries have conformal dimension 1.

Tue, 17 Oct 2017
12:45
C5

Analysis of small contacts between particles in a furnace

Caoimhe Rooney
(Mathematical Institute, University of Oxford)
Abstract

Many metallurgical processes involve the heat treatment of granular material due to large alternating currents. To understand how the current propagates through the material, one must understand the bulk resistivity, that is, the resistivity of the granular material as a whole. The literature suggests that the resistance due to contacts between particles contributes significantly to the bulk resistivity, therefore one must pay particular attention to these contacts. 

My work is focused on understanding the precise impact of small contacts on the current propagation. The scale of the contacts is several order of magnitude smaller than that of the furnace itself, therefore we apply matched asymptotics methods to study how the current varies with the size of the contact.

Subscribe to C5