Thu, 03 Dec 2015

16:00 - 17:00
C5

A Theorem by Thom

Renee Hoekzema
(Oxford)
Abstract

In 1954 Thom showed that there is an isomorphism between the cobordism groups of manifolds and the homotopy groups of the Thom spectrum. I will define what these words mean and present the explicit, geometric construction of the isomorphism.

Thu, 26 Nov 2015

16:00 - 17:00
C5

Morse theory of the distance function

Matthias Wink
(Oxford)
Abstract

A basic result in Morse theory due to Reeb states that a compact manifold which admits a smooth function with only two, non-degenerate critical points is homeomorphic to the sphere. We shall apply this idea to distance function associated to a Riemannian metric to prove the diameter-sphere theorem of Grove-Shiohama: A complete Riemannian manifold with sectional curvature $\geq 1$ and diameter $> \pi / 2$ is homeomorphic to a sphere. I shall not assume any knowledge about curvature for the talk.

Thu, 19 Nov 2015

16:00 - 17:00
C5

Branched Covers of Cube Complexes

Robert Kropholler
(Oxford)
Abstract

I will discuss the theory of branched covers of cube complexes as a method of hyperbolisation. I will show recent results using this technique. Time permitting I will discuss a form of Morse theory on simplicial complexes and show how these methods combined with the earlier methods allow one to create groups with interesting finiteness properties. 

Thu, 12 Nov 2015

16:00 - 17:00
C5

Finite covers of 3-manifold groups

Gareth Wilkes
(Oxford)
Abstract

I will introduce the profinite completion as a way of aggregating information about the finite-sheeted covers of a 3-manifold, and discuss the state of the homeomorphism problem for 3-manifolds in this context; in particular, for geometrizable 3-manifolds.

Thu, 05 Nov 2015

16:00 - 17:00
C5

Deformation K-theory

Simon Gritschacher
(Oxford)
Abstract

Deformation K-theory was introduced by G. Carlsson and gives an interesting invariant of a group G encoding higher homotopy information about its representation spaces. Lawson proved a relation between this object and a homotopy theoretic analogue of the representation ring. This talk will not contain many details, instead I will outline some basic constructions and hopefully communicate the main ideas.
 

Thu, 22 Oct 2015

16:00 - 17:00
C5

Einstein metrics on 4-manifolds

Alejandro Betancourt
(Oxford)
Abstract


Abstract: Four manifolds are some of the most intriguing objects in topology. So far, they have eluded any attempt of classification and their behaviour is very different from what one encounters in other dimensions. On the other hand, Einstein metrics are among the canonical types of metrics one can find on a manifold. In this talk I will discuss many of the peculiarities that make dimension four so special and see how Einstein metrics could potentially help us understand more about four manifolds.

Thu, 04 Jun 2015
11:00
C5

``Multiplicative relations among singular moduli''

Jonathan Pila
(Oxford)
Abstract

I will report on some joint work with Jacob Tsimerman
concerning multiplicative relations among singular moduli.
Our results rely on the ``Ax-Schanuel'' theorem for the j-function
recently proved by us, which I will describe.

Subscribe to C5