Thu, 12 Mar 2015
11:00
C5

'Model-completeness for Henselian valued fields with finite ramification'

Jamshid Derakhshan
(Oxford)
Abstract

 This is joint work with Angus Macintyre. We prove a general model-completeness theorem for Henselian valued fields
stating that a Henselian valued field of characteristic zero with value group a Z-group and with finite ramification is model-complete in the language of rings provided that its residue field is model-complete. We apply this to extensions of p-adic fields showing that any finite or infinite extension of p-adics with finite ramification is model-complete in the language of rings.

Thu, 19 Feb 2015
11:00
C5

"The first-order theory of G_Q".

Philip Dittman
(Oxford)
Abstract

Motivated by an open conjecture in anabelian geometry, we investigate which arithmetic properties of the rationals are encoded in the absolute Galois group G_Q. We give a model-theoretic framework for studying absolute Galois groups and discuss in what respect orderings and valuations of the field are known to their first-order theory. Some questions regarding local-global principles and the transfer to elementary extensions of Q are raised.

Thu, 12 Feb 2015
11:00
C5

Matrix multiplication is determined by orthogonality and trace.

Chris Heunen
(Oxford)
Abstract

Everything measurable about a quantum system, as modelled by a noncommutative operator algebra, is captured by its commutative subalgebras. We briefly survey this programme, and zoom in one specific incarnation: any bilinear associative function on the set of n-by-n matrices over a field of characteristic not two, that makes the same vectors orthogonal as ordinary matrix multiplication and gives the same trace as ordinary matrix multiplication, must in fact be ordinary matrix multiplication (or its opposite). Model-theoretic questions about the hypotheses and scope of this theorem are raised.

Tue, 24 Feb 2015

11:00 - 12:30
C5

Embedology for Control and Random Dynamical Systems in Reproducing Kernel Hilbert Spaces

Visiting Professor Boumediene Hamzi
(Koç University Istanbul)
Abstract

Abstract: We introduce a data-based approach to estimating key quantities which arise in the study of nonlinear control and random dynamical systems. Our approach hinges on the observation that much of the existing linear theory may be readily extended to nonlinear systems -with a reasonable expectation of success - once the nonlinear system has been mapped into a high or infinite dimensional Reproducing Kernel Hilbert Space. In particular, we develop computable, non-parametric estimators approximating controllability and observability energy/Lyapunov functions for nonlinear systems, and study the ellipsoids they induce. It is then shown that the controllability energy estimator provides a key means for approximating the invariant measure of an ergodic, stochastically forced nonlinear system. We also apply this approach to the problem of model reduction of nonlinear control systems.

In all cases the relevant quantities are estimated from simulated or observed data. These results collectively argue that there is a reasonable passage from linear dynamical systems theory to a data-based nonlinear dynamical systems theory through reproducing kernel Hilbert spaces. This is a joint work with J. Bouvrie (MIT).

Subscribe to C5