Thu, 20 Feb 2020

15:00 - 16:00
C5

Ribbons and moduli spaces of stable pairs

Aurelio Carlucci
Abstract

This talk aims to provide a simple introduction on how to probe the
explicit geometry of certain moduli schemes arising in enumerative
geometry. Stable pairs, introduced by Pandharipande and Thomas in 2009, offer a curve-counting theory which is tamer than the Hilbert scheme of
curves used in Donaldson-Thomas theory. In particular, they exclude
curves with zero-dimensional or embedded components.

Ribbons are non-reduced schemes of dimension one, whose non-reduced
structure has multiplicity two in a precise sense. Following Ferrand, Banica, and Forster, there are several results on how to construct
ribbons (and higher non-reduced structures) from the data of line
bundles on a reduced scheme. With this approach, we can consider stable
pairs whose underlying curve is a ribbon: the remaining data is
determined by allowing devenerations of the line bundle defining the
double structure.

Thu, 13 Feb 2020

15:00 - 16:00
C5

Jacobian threefolds, Prym surfaces and 2-Selmer groups

Jef Laga
(Cambridge)
Abstract

In 2013, Bhargava-Shankar proved that (in a suitable sense) the average rank of elliptic curves over Q is bounded above by 1.5, a landmark result which earned Bhargava the Fields medal. Later Bhargava-Gross proved similar results for hyperelliptic curves, and Poonen-Stoll deduced that most hyperelliptic curves of genus g>1 have very few rational points. The goal of my talk is to explain how simple curve singularities and simple Lie algebras come into the picture, via a modified Grothendieck-Brieskorn correspondence.

Moreover, I’ll explain how this viewpoint leads to new results on the arithmetic of curves in families, specifically for certain families of non-hyperelliptic genus 3 curves.

Tue, 03 Dec 2019

12:45 - 14:00
C5

Computing multiple local minima of topology optimization problems with second-order methods

Ioannis Papadopoulos
((Oxford University))
Abstract


Topology optimisation finds the optimal material distribution of a fluid or solid in a domain, subject to PDE and volume constraints. There are many formulations and we opt for the density approach which results in a PDE, volume and inequality constrained, non-convex, infinite-dimensional optimisation problem without a priori knowledge of a good initial guess. Such problems can exhibit many local minima or even no minima. In practice, heuristics are used to obtain the global minimum, but these can fail even in the simplest of cases. In this talk, we will present an algorithm that solves such problems and systematically discovers as many of these local minima as possible along the way.

Thu, 28 Nov 2019

16:00 - 17:00
C5

Introduction to K-stability

Michael Hallam
Abstract

A big problem in Riemannian geometry is the search for a "best possible" Riemannian metric on a given compact smooth manifold. When the manifold is complex, one very nice metric we could look for is a Kahler-Einstein metric. For compact Kahler manifolds with non-positive first chern class, these were proven to always exist by Aubin and Yau in the 70's. However, the case of positive first chern class is much more delicate, and there are non-trivial obstructions to existence. It wasn't until this decade that a complete abstract characterisation of Kahler-Einstein metrics became available, in the form of K-stability. This is a purely algebro-geometric stability condition, whose equivalence to the existence of a Kahler-Einstein metric in the Fano case is analogous to the Hitchin-Kobayashi correspondence for vector bundles. In this talk, I will cover the definition of K-stability, its relation to Kahler-Einstein metrics, and (time permitting) give some examples of how K-stability is verified or disproved in practice.

Thu, 21 Nov 2019

16:00 - 17:00
C5

Non-commutative counting and stability

Arkadij Bojko
Abstract

G. Dimitrov and L. Katzarkov introduced in their paper from 2016 the counting of non-commutative curves and their (semi-)stability using T. Bridgeland's stability conditions on triangulated categories. To some degree one could think of this as the non-commutative analog of Gromov-Witten theory. However, its full meaning has not yet been fully discovered. For example there seems to be a relation to proving Markov's conjecture. 

For the talk, I will go over the definitions of stability conditions, non-commutative curves and their counting. After developing some tools relying on working with exceptional collections, I will consider the derived category of representations on the acyclic triangular quiver and will talk about the explicit computation of the invariants for this example.

Tue, 19 Nov 2019

12:45 - 14:00
C5

Droplet impact on deformable substrates: A combined theoretical and computational approach

Michael Negus
((Oxford University))
Abstract

Recent advances in experimental imaging techniques have allowed us to observe the fine details of how droplets behave upon impact onto a substrate. However, these are highly non-linear, multiscale phenomena and are thus a formidable challenge to model. In addition, when the substrate is deformable, such as an elastic sheet, the fluid-structure interaction introduces an extra layer of complexity.

We present two modeling approaches for droplet impact onto deformable substrates: matched asymptotics and direct numerical simulations. In the former, we use Wagner's theory of impact to derive analytical expressions which approximate the behavior during the early time of impact. In the latter, we use the open source volume-of-fluid code Basilisk to conduct simulations designed to give insight into the later times of impact.

We conclude by showing how these methods are complementary, and a combination of both can give a thorough understanding of the droplet impact across timescales. 

Thu, 14 Nov 2019

16:00 - 17:30
C5

Vertex algebras and the homology of moduli stacks

Jacob Gross
Abstract

Recently, Joyce constructed a Ringel-Hall style graded vertex algebra on the homology of moduli stacks of objects in certain categories of algebro-geometric and representation-theoretic origin. The construction is most natural for 2n-Calabi-Yau categories. We present this construction and explain the geometric reason why it exists. If time permits, we will explain how to compute the homology of the moduli stack of objects in the derived category of a smooth complex projective variety and to identify it with a lattice-type vertex algebra.

Tue, 05 Nov 2019

12:45 - 14:00
C5

Dimensionality reduction techniques for global optimization

Adilet Otemissov
((Oxford University))
Abstract

We consider the problem of global minimization with bound constraints. The problem is known to be intractable for large dimensions due to the exponential increase in the computational time for a linear increase in the dimension (also known as the “curse of dimensionality”). In this talk, we demonstrate that such challenges can be overcome for functions with low effective dimensionality — functions which are constant along certain linear subspaces. Such functions can often be found in applications, for example, in hyper-parameter optimization for neural networks, heuristic algorithms for combinatorial optimization problems and complex engineering simulations.

Extending the idea of random subspace embeddings in Wang et al. (2013), we introduce a new framework (called REGO) compatible with any global min- imization algorithm. Within REGO, a new low-dimensional problem is for- mulated with bound constraints in the reduced space. We provide probabilistic bounds for the success of REGO; these results indicate that the success is depen- dent upon the dimension of the embedded subspace and the intrinsic dimension of the function, but independent of the ambient dimension. Numerical results show that high success rates can be achieved with only one embedding and that rates are independent of the ambient dimension of the problem.

 

Thu, 24 Oct 2019

16:00 - 17:30
C5

The classifying space of the 1-dimensional homotopy bordism category

Jan Steinebrunner
Abstract

The homotopy bordism category hCob_d has as objects closed (d-1)-manifolds and as morphisms diffeomorphism classes of d-dimensional bordisms. This is a simplified version of the topologically enriched bordism category Cob_d whose classifying space B(Cob_d) been completely determined by Galatius-Madsen-Tillmann-Weiss in 2006. In comparison, little is known about the classifying space B(hCob_d).

In the first part of the talk I will give an introduction to bordism categories and their classifying spaces. In the second part I will identify B(hCob_1) showing, in particular, that the rational cohomology ring of hCob_1 is polynomial on classes \kappa_i in degrees 2i+2 for all i>=1. The seemingly simpler category hCob_1 hence has a more complicated classifying space than Cob_1.

Subscribe to C5