Tue, 22 Oct 2019

12:45 - 14:00
C5

Numerical Simulations using Approximate Random Numbers

Oliver Sheridan-Methven
((Oxford University))
Abstract

Introducing cheap function proxies for quickly producing approximate random numbers, we show convergence of modified numerical schemes, and coupling between approximation and discretisation errors. We bound the cumulative roundoff error introduced by floating-point calculations, valid for 16-bit half-precision (FP16). We combine approximate distributions and reduced-precisions into a nested simulation framework (via multilevel Monte Carlo), demonstrating performance improvements achieved without losing accuracy. These simulations predominantly perform most of their calculations in very low precisions. We will highlight the motivations and design choices appropriate for SVE and FP16 capable hardware, and present numerical results on Arm, Intel, and NVIDIA based hardware.

 

Thu, 17 Oct 2019

16:00 - 17:30
C5

A biased view of two-row Springer theory

Filip Zivanovic
Abstract

Springer theory is an important branch of geometric representation theory. It is a beautiful interplay between combinatorics, geometry and representation theory.
It started with Springer correspondence, which yields geometric construction of irreducible representations of symmetric groups, and Ginzburg's construction of universal enveloping algebra U(sl_n).

Here I will present a view of two-row Springer theory of type A (thus looking at nilpotent elements with two Jordan blocks) from a scope of a symplectic topologist (hence the title), that yields connections between symplectic-topological invariants and link invariants (Floer homology and Khovanov homology) and connections to representation theory (Fukaya category and parabolic category O), thus summarising results by Abouzaid,
Seidel, Smith and Mak on the subject.

Tue, 11 Jun 2019
16:00
C5

The momentum amplituhedron

Matteo Parisi
(Oxford)
Abstract

In this paper we define a new object, the momentum amplituhedron, which is the long sought-after positive geometry for tree-level scattering amplitudes in N=4 super Yang-Mills theory in spinor helicity space. Inspired by the construction of the ordinary amplituhedron, we introduce bosonized spinor helicity variables to represent our external kinematical data, and restrict them to a particular positive region. The momentum amplituhedron Mn,k is then the image of the positive Grassmannian via a map determined by such kinematics. The scattering amplitudes are extracted from the canonical form with logarithmic singularities on the boundaries of this geometry.

Tue, 28 May 2019
16:00
C5

Celestial Amplitudes: conformal partial waves and soft theorems

Dhritiman Nandan
(Southampton)
Abstract

 Massless scattering amplitudes in four-dimensional Minkowski spacetime can be Mellin transformed to correlation functions on the celestial sphere at null infinity called celestial amplitudes. We study various properties of massless four-point scalar and gluon celestial amplitudes such as conformal partial wave decomposition, crossing relations and optical theorem. As a byproduct, we derive the analog of the single and double soft limits for all gluon celestial amplitudes.

Tue, 21 May 2019

14:00 - 17:00
C5

COXIC: Complexity Oxford Imperial College

Further Information

Complexity Oxford Imperial College, COXIC, is a series of workshops aiming at bringing together researchers in Oxford and Imperial College interested in complex systems. The events take place twice a year, alternatively in Oxford and in London, and give the possibility to PhD students and young postdocs to present their research.


Schedule:
2:00: Welcome
2:15: Maria del Rio Chanona (OX), On the structure and dynamics of the job market
2:35: Max Falkenberg McGillivray (IC), Modelling the broken heart
2:55: Fernando Rosas (OX), Quantifying high-order interdependencies
 

3:15 - 4:00: Coffee break
 

4:00: Rishi Nalin Kumar (IC), Building scalable agent based models using open source technologies
4:20: Rodrigo Leal Cervantes (OX) Greed Optimisation of Modularity with a Self-Adaptive Resolution Parameter
4:40: TBC
 

5:00: Social event at the Lamb & Flag

Tue, 22 Jan 2019

12:45 - 13:30
C5

Wave attenuation by flexible vegetation

Clint Wong
(Oxford University)
Abstract

Coastal vegetation has a well-known effect of attenuating waves; however, quantifiable measures of attenuation for general wave and vegetation scenarios are not well known. On the plant scale, there are extensive studies in predicting the dynamics of a single plant in an oscillatory flow. On the coastal scale however, there are yet to be compact models which capture the dynamics of both the flow and vegetation, when the latter exists in the form of a dense canopy along the bed. In this talk, we will discuss the open questions in the field and the modelling approaches involved. In particular, we investigate how micro-scale effects can be homogenised in space and how periodic motions can be averaged in time.

Tue, 27 Nov 2018

12:45 - 13:30
C5

Wrinkling of Elastic Bilayers

Hamza Alawiye
(Oxford)
Abstract

Wrinkling is a universal instability occurring in a wide variety of engineering and biological materials. It has been studied extensively for many different systems but a full description is still lacking. Here, we provide a systematic analysis of the wrinkling of a thin hyperelastic film over a substrate in plane strain using stream functions. For comparison, we assume that wrinkling is generated either by the isotropic growth of the film or by the lateral compression of the entire system. We perform an exhaustive linear analysis of the wrinkling problem for all stiffness ratios and under a variety of additional boundary and material effects.

Tue, 13 Nov 2018
16:00
C5

On some applications of excursion theory

Dr Marcin Wisniewolski
(University of Warsaw)
Abstract

During the talk I will present some new computational technique based on excursion theory for Markov processes. Some new results for classical processes like Bessel processes and reflected Brownian Motion will be shown. The most important point of presented applications will be the new insight into Hartman-Watson (HW) distributions. It turns out that excursion theory will enable us to deduce the simple connections of HW with a hyperbolic cosine of Brownian Motion.

Tue, 13 Nov 2018

12:45 - 13:30
C5

Nucleation, Bubble Growth and Coalescence

Victoria Pereira
(/Mathematical Institute/Engineering)
Abstract

In gas-liquid two-phase pipe flows, flow regime transition is associated with changes in the micro-scale geometry of the flow. In particular, the bubbly-slug transition is associated with the coalescence and break-up of bubbles in a turbulent pipe flow. We consider a sequence of models designed to facilitate an understanding of this process. The simplest such model is a classical coalescence model in one spatial dimension. This is formulated as a stochastic process involving nucleation and subsequent growth of ‘seeds’, which coalesce as they grow. We study the evolution of the bubble size distribution both analytically and numerically. We also present some ideas concerning ways in which the model can be extended to more realistic two- and three-dimensional geometries.

Tue, 30 Oct 2018

12:45 - 13:30
C5

Riding through glue: the aerodynamics of performance cycling

Alex Bradley
(Dept of Mathematical Sciences)
Abstract

As a rule of thumb, the dominant resistive force on a cyclist riding along a flat road at a speed above 10mph is aerodynamic drag; at higher speeds, this drag becomes even more influential because of its non-linear dependence on speed. Reducing drag, therefore, is of critical importance in bicycle racing, where winning margins are frequently less than a tyre's width (over a 200+km race!). I shall discuss a mathematical model of aerodynamic drag in cycling, present mathematical reasoning behind some of the decisions made by racing cyclists when attempting to minimise it, and touch upon some of the many methods of aerodynamic drag assessment.

Subscribe to C5