Wed, 10 Oct 2018
16:00
C5

Cubulating Groups

Sam Shepherd
(Oxford University)
Abstract

Cubulating a group means finding a proper cocompact action on a CAT(0) cube complex. I will describe how cubulating a group tells us some nice properties of the group, and explain a general strategy for finding cubulations.

Thu, 15 Nov 2018
16:00
C5

An introduction to Heegaard Floer homology

Antonio Alfieri
(CEU)
Abstract

Lagrangian Floer homology has been used by Ozsvath and Szabo to define a package of three-manifold invariants known as Heegaard Floer homology. I will give an introduction to the topic.

Thu, 22 Nov 2018
16:00
C5

TBA

Nicholas Wilkins
(Oxford University)
Thu, 08 Nov 2018
16:00
C5

Classifications of Topological Quantum Field Theories

Peter Banks
(Oxford University)
Abstract

TQFTs lie at the intersection of maths and theoretical physics. Topologically, they are a recipe for calculating an invariant of manifolds by cutting them into elementary pieces; physically, they describe the evolution of the state of a particle. These two viewpoints allow physical intuition to be harnessed to shed light on topological problems, including understanding the topology of 4-manifolds and calculating geometric invariants using topology.

Recent results have provided classifications of certain types of TQFTs as algebraic structures. After reviewing the definition of TQFTs and giving some diagrammatic examples, I will give informal arguments as to how these classifications arise. Finally, I will show that in many cases these algebras are in fact free, and give an explicit classification of them in this case.
 

Thu, 29 Nov 2018
16:00
C5

Universal connections, the restricted Grassmannian and differential K-theory

Eric Schlarmann
(Universität Augsburg)
Abstract

The usual finite dimensional Grassmannians are well known to be classifying spaces for vector bundles. It is maybe a less known fact that one has certain natural connections on the Stiefel bundles over them, which also have a universality property. I will show how these connections are constructed and explain how this viewpoint can be used to rediscover Chern-Weil theory. Finally, we will see how a certain stabilized version of this, called the restricted Grassmannian, admits a similar construction, which can be used to show that it is a smooth classifying space for differential K-theory.

Thu, 25 Oct 2018
16:00
C5

An Introduction to Morse Homology

Todd Liebenschutz-Jones
(Oxford University)
Abstract

Morse theory explores the topology of a smooth manifold $M$ by looking at the local behaviour of a fixed smooth function $f : M \to \mathbb{R}$. In this talk, I will explain how we can construct ordinary homology by looking at the flow of $\nabla f$ on the manifold. The talk should serve as an introduction to Morse theory for those new to the subject. At the end, I will state a new(ish) proof of the functoriality of Morse homology.

Thu, 18 Oct 2018
16:00
C5

Smooth Lagrangians in conical symplectic resolutions

Filip Zivanovic
(University of Oxford)
Abstract

Conical symplectic resolutions are one of the main objects in the contemporary mix of algebraic geometry and representation theory, 

known as geometric representation theory. They cover many interesting families of objects such as quiver varieties and hypertoric

varieties, and some simpler such as Springer resolutions. The last findings [Braverman, Finkelberg, Nakajima] say that they arise

as Higgs/Coulomb moduli spaces, coming from physics. Most of the gadgets attached to conical symplectic resolutions are rather

algebraic, such as their quatizations and $\mathcal{O}$-categories. We are rather interested in the symplectic topology of them, in particular 

finding smooth exact Lagrangians that appear in the central fiber of the (defining) resolution, as they are objects of the Fukaya category.

Wed, 13 Jun 2018

16:00 - 17:00
C5

The l1-homology of one-relator groups

Nicolaus Heuer
(University of Oxford)
Abstract

We will study the l1-homology of the 2-class in one relator groups. We will see that there are many qualitative and quantitive similarities between the l1-norm of the top dimensional class and the stable commutator length of the defining relation. As an application we construct manifolds with small simplicial volume.

This work in progress is joint with Clara Loeh.

Tue, 12 Jun 2018

12:45 - 13:30
C5

Scalable Least-Squares Minimisation for Bundle Adjustment Problems

Lindon Roberts
Abstract

Structure from Motion (SfM) is a problem which asks: given photos of an object from different angles, can we reconstruct the object in 3D? This problem is important in computer vision, with applications including urban planning and autonomous navigation. A key part of SfM is bundle adjustment, where initial estimates of 3D points and camera locations are refined to match the images. This results in a high-dimensional nonlinear least-squares problem. In this talk, I will discuss how dimensionality reduction methods such as block coordinates and sketching can be used to improve solver scalability for bundle adjustment problems.

Subscribe to C5