Thu, 19 Jun 2025
12:00
C6

Local behaviour of solutions to non-local kinetic equations

Amélie Loher
(University of Cambridge)
Abstract

We will discuss local regularity properties for solutions to non-local equations naturally arising in kinetic theory. We will focus on the Strong Harnack inequality for global solutions to a non-local kinetic equation in divergence form. We will explain the connection to the Boltzmann equation and we will mention a few consequences on the asymptotic behaviour of the solutions.

Tue, 17 Jun 2025
14:00
C6

Lagrangian mean curvature flow out of conical singularities

Spandan Ghosh
(University of Oxford)
Abstract

Lagrangian mean curvature flow (LMCF) is a way to deform Lagrangian submanifolds inside a Calabi-Yau manifold according to the negative gradient of the area functional. There are influential conjectures about LMCF due to Thomas-Yau and Joyce, describing the long-time behaviour of the flow, singularity formation, and how one may flow past singularities. In this talk, we will show how to flow past a conically singular Lagrangian by gluing in expanders asymptotic to the cone, generalizing an earlier result by Begley-Moore. We solve the problem by a direct P.D.E.-based approach, along the lines of recent work by Lira-Mazzeo-Pluda-Saez on the network flow. The main technical ingredient we use is the notion of manifolds with corners and a-corners, as introduced by Joyce following earlier work of Melrose.

Tue, 10 Jun 2025
14:00
C6

Nearly G2-structures and G2-Laplacian co-flows.

Jakob Stein
(UNICAMP )
Abstract

In this talk, we discuss nearly G2 structures, which define positive Einstein metrics, and are, up to scale, critical points of a geometric flow called (modified) Laplacian co-flow. We will discuss a recent joint work with Jason Lotay showing that many of these nearly G2 critical points are unstable for the flow. 

Mon, 02 Jun 2025
13:00
C6

Supersymmetry is dying. Should we save it? (Debate Session, ALL ARE WELCOME)

Zhenghao Zhong
Abstract

The rise to fame of supersymmetry since the 1970s shook the world. It held much promise—from explaining naturalness, unifying fundamental forces, to being the ideal candidate for dark matter. But since the LHC (arguably even a bit before that), many of these dreams have been shattered by experiments. Today, the pursuit of supersymmetric theories by the physics community is a mere shadow of its former self.

This symposium is not to discuss whether supersymmetry is useful in the fields of physics and mathematics—it clearly is. Rather, this is a debate about whether its death is natural. We’ve had a crack at it for half a century. Is this the limit of what we can do? Are we any closer to achieving the original goals we set out? Is the death premature, accelerated by a negative campaign from SUSY critics? Or is it the other way around—has it been at death’s door for decades, kept alive only because authoritative figures cannot let go?

Twenty years ago, this wouldn’t even be a debate. Twenty years from now, there may not be any young people working on SUSY at all. This seems like the right time to talk.

Thu, 05 Jun 2025
12:00
C6

A modeling perspective on retinal degeneration

Naoufel Cresson
(Sorbonne Université)
Abstract

This talk introduces an ongoing research project focused on building mechanistic models to study retinal degeneration, with a particular emphasis on the geometric aspects of the disease progression.

As we develop a computational model for retinal degeneration, we will explore how cellular materials behave and how wound-healing mechanisms influence disease progression. Finally, we’ll detail the numerical methods used to simulate these processes and explain how we work with medical data.

Ongoing research in collaboration with the group of M. Paques (Paris Eye Imaging - Quinze Vingts National Ophthalmology Hospital and Vision Institute).

Thu, 12 Jun 2025
12:00
C6

Recent progress on the structure of metric currents.

Emanuele Caputo
(University of Warwick)
Abstract

The goal of the talk is to give an overview of the metric theory of currents by Ambrosio-Kirchheim, together with some recent progress in the setting of Banach spaces. Metric currents are a generalization to the metric setting of classical currents. Classical currents are the natural generalization of oriented submanifolds, as distributions play the same role for functions. We present a structure result for 1-metric currents as superposition of 1-rectifiable sets in Banach spaces, which generalizes a previous result by Schioppa. This is based on an approximation result of metric 1-currents with normal 1-currents. This is joint work with D. Bate, J. Takáč, P. Valentine, and P. Wald (Warwick).

Thu, 08 May 2025
12:00
C6

Sard properties for polynomial maps in infinite dimension

Daniele Tiberio
(University of Padova)
Abstract

Sard’s theorem asserts that the set of critical values of a smooth map from one Euclidean space to another one has measure zero. A version of this result for infinite-dimensional Banach manifolds was proven by Smale for maps with Fredholm differential. However, when the domain is infinite dimensional and the range is finite dimensional, the result is not true – even under the assumption that the map is “polynomial” – and a general theory is still lacking. In this seminar, I will provide sharp quantitative criteria for the validity of Sard’s theorem in this setting, obtained combining a functional analysis approach with new tools in semialgebraic geometry. As an application, I will present new results on the Sard conjecture in sub-Riemannian geometry. Based on a joint work with A. Lerario and L. Rizzi.

Thu, 15 May 2025
12:00
C6

Recent progress on the inverse scattering theory for ideal Alfvén waves

Mengni Li
(Southeast University, Nanjing)
Abstract

The Alfvén waves are fundamental wave phenomena in magnetized plasmas. Mathematically, the dynamics of Alfvén waves are governed by a system of nonlinear partial differential equations called the magnetohydrodynamics (MHD) equations. Let us introduce some recent results about inverse scattering of Alfvén waves in ideal MHD, which are intended to establish the relationship between Alfvén waves emanating from the plasma and their scattering fields at infinities.The proof is mainly based on the weighted energy estimates. Moreover, the null structure inherent in MHD equations is thoroughly examined, especially when we estimate the pressure term.

Thu, 22 May 2025
12:00
C6

Homogenisation for compressible fluids

Pierre Gonin-Joubert
(Université Claude Bernard Lyon 1)
Abstract

Several physical models are available to understand the dynamics of fluid mixtures, including the so-called Baer-Nunziato models. The partial differential equations associated with these models look like those of Navier-Stokes, with the addition of new relaxation terms. One strategy to obtain these models is homogenisation: starting from a mesoscopic mixture, where two pure fluids satisfying the compressible Navier-Stokes equations share the space between them, a change of scale is performed to obtain a macroscopic mixture, where the two fluids can coexist at any point in space.

This problem concerns the study of the Navier-Stokes equations with strongly oscillating initial data. We'll start by explaining some results in this framework, in one dimension of space and on the torus, for barotropic fluids. We will then detail the various steps involved in demonstrating homogenisation. Finally, we'll explain how to adapt this reasoning to homogenisation for perfect gases, with and without heat conduction.

Subscribe to C6