Tue, 23 May 2023
14:00
C6

What we do in the shadows: mining temporal motifs from transactions on the Dark Web

Dr. Naomi Arnold
(Northeastern University London)
Abstract
Dark web marketplaces are forums where users can buy or sell illicit goods/services and transactions are typically made using cryptocurrencies. While there have been numerous coordinated shutdowns of individual markets by authorities, the ecosystem has been found to be immensely resilient. In addition, while transactions are open and visible by anyone on the blockchain, the sheer scale of the data makes monitoring beyond basic characteristics a huge effort.

In this talk, I propose the use of temporal motif counting, as a way of monitoring both the system as a whole and the users within it. Focusing on the Alphabay and Hydra dark markets, I study all the motifs formed by three sequential transactions among two to three users, finding that they can tell us something more complex than can be captured by simply degree or transaction volume. Studying motifs local to the node, I show how users form salient clusters, which is a promising route for classification or anomaly detection tasks.
Tue, 16 May 2023
14:00
C6

Laplacian renormalization group for heterogeneous networks

Dr. Pablo Villegas
(Enrico Fermi Center for Study and Research)

Note: we would recommend to join the meeting using the Zoom client for best user experience.

Further Information

Pablo's main research interests concern complex systems in various fields, from biology to self-organized criticality theory, both from a theoretical and an applicative point of view.
As for the theoretical aspect, he contributed to the definition of mesoscopic models of the dynamics of the cortex, to the analysis of Griffiths Phases in complex networks. In term of applied works, he conducted an analysis of emerging patterns in tropical forests, such as those of Barro Colorado in Panama.

In this seminar, Pablo will present his recent work titled "Laplacian renormalization group for heterogeneous networks", published in Nature Physics earlier this year (link to the paper below).
 

Article: https://www.nature.com/articles/s41567-022-01866-8

 

Join Zoom Meeting
https://zoom.us/j/99314750082?pwd=L3kvZVh0TVJNRnk5Tm95YUpVODVRZz09

Meeting ID: 993 1475 0082
Passcode: 669691

 

Abstract

Complex networks usually exhibit a rich architecture organized over multiple intertwined scales. Information pathways are expected to pervade these scales reflecting structural insights that are not manifest from analyses of the network topology. Moreover, small-world effects correlate with the different network hierarchies complicating identifying coexisting mesoscopic structures and functional cores. We present a communicability analysis of effective information pathways throughout complex networks based on information diffusion to shed further light on these issues. This leads us to formulate a new renormalization group scheme for heterogeneous networks. The Renormalization Group is the cornerstone of the modern theory of universality and phase transitions, a powerful tool to scrutinize symmetries and organizational scales in dynamical systems. However, its network counterpart is particularly challenging due to correlations between intertwined scales. The Laplacian RG picture for complex networks defines both the supernodes concept à la Kadanoff, and the equivalent momentum space procedure à la Wilson for graphs.

Tue, 02 May 2023
14:00
C6

Real-world Walk Processes with Dr. Carolina Mattsson

Dr. Carolina Mattsson
(CENTAI Institute)
Abstract

What do football passes and financial transactions have in common? Both are observable events in some real-world walk process that is happening over some network that is, however, not directly observable. In both cases, the basis for record-keeping is that these events move something tangible from one node to another. Here we explore process-driven approaches towards analyzing such data, with the goal of answering domain-specific research questions. First, we consider transaction data from a digital community currency recorded over 16 months. Because these are records of a real-world walk process, we know that the time-aggregated network is a flow network. Flow-based network analysis techniques let us concisely describe where and among whom this community currency was circulating. Second, we use a technique called trajectory extraction to transform football match event data into passing sequence data. This allows us to replicate classic results from sports science about possessions and uncover intriguing dynamics of play in five first-tier domestic leagues in Europe during the 2017-18 club season. Taken together, these two applied examples demonstrate the interpretability of process-driven approaches as opposed to, e.g., temporal network analysis, when the data are records of a real-world walk processes.

Mon, 15 May 2023
14:00
C6

Ext in functor categories and stable cohomology of Aut(F_n) (Arone)

Greg Arone
Abstract

 

We present a homotopy-theoretic method for calculating Ext groups between polynomial functors from the category of (finitely generated, free) groups to abelian groups. It enables us to substantially extend the range of what can be calculated. In particular, we can calculate torsion in the Ext groups, about which very little has been known. We will discuss some applications to the stable cohomology of Aut(F_n), based on a theorem of Djament.   

 

 

Tue, 21 Jun 2022

14:00 - 15:00
C6

Sequential Motifs in Observed Walks

Timothy LaRock
(Mathematical Institute (University of Oxford))
Abstract

The structure of complex networks can be characterized by counting and analyzing network motifs, which are small graph structures that occur repeatedly in a network, such as triangles or chains. Recent work has generalized motifs to temporal and dynamic network data. However, existing techniques do not generalize to sequential or trajectory data, which represents entities walking through the nodes of a network, such as passengers moving through transportation networks. The unit of observation in these data is fundamentally different, since we analyze observations of walks (e.g., a trip from airport A to airport C through airport B), rather than independent observations of edges or snapshots of graphs over time. In this work, we define sequential motifs in trajectory data, which are small, directed, and sequenced-ordered graphs corresponding to patterns in observed sequences. We draw a connection between counting and analysis of sequential motifs and Higher-Order Network (HON) models. We show that by mapping edges of a HON, specifically a kth-order DeBruijn graph, to sequential motifs, we can count and evaluate their importance in observed data, and we test our proposed methodology with two datasets: (1) passengers navigating an airport network and (2) people navigating the Wikipedia article network. We find that the most prevalent and important sequential motifs correspond to intuitive patterns of traversal in the real systems, and show empirically that the heterogeneity of edge weights in an observed higher-order DeBruijn graph has implications for the distributions of sequential motifs we expect to see across our null models.

ArXiv link: https://arxiv.org/abs/2112.05642

Tue, 14 Jun 2022

14:00 - 15:00
C6

TBA

Luc Rocher
(Oxford Internet Institute)
Tue, 07 Jun 2022

14:00 - 15:00
C6

Homological analysis of network dynamics

Dane Taylor
(Department of Mathematics - University at Buffalo)
Abstract

Social, biological and physical systems are widely studied through the modeling of dynamical processes over networks, and one commonly investigates the interplay between structure and dynamics. I will discuss how cyclic patterns in networks can influence models for collective and diffusive processes, including generalized models in which dynamics are defined over simplicial complexes and multiplex networks. Our approach relies on homology theory, which is the subfield of mathematics that formally studies cycles (and more generally, k-dimensional holes). We will make use of techniques including persistent homology and Hodge theory to examine the role of cycles in helping organize dynamics onto low-dimensional manifolds. This pursuit represents an emerging interface between the fields of network-coupled dynamical systems and topological data analysis.

Mon, 02 May 2022

16:00 - 17:00
C6

Random matrices with integer entries

Valeriya Kovaleva
Abstract

Many classical arithmetic problems ranging from the elementary ones such as the density of square-free numbers to more difficult such as the density of primes, can be extended to integer matrices. Arithmetic problems over higher dimensions are typically much more difficult. Indeed, the Bateman-Horn conjecture predicting the density of numbers giving prime values of multivariate polynomials is very much open. In this talk I give an overview of the unfortunately brief history of integer random matrices.

Tue, 31 May 2022

14:00 - 15:00
C6

Physics-inspired machine learning

Konstantin Rusch
(ETH Zurich)
Abstract

Combining physics with machine learning is a rapidly growing field of research. Thereby, most work focuses on leveraging machine learning methods to solve problems in physics. Here, however, we focus on the reverse direction of leveraging structure of physical systems (e.g. dynamical systems modeled by ODEs or PDEs) to construct novel machine learning algorithms, where the existence of highly desirable properties of the underlying method can be rigorously proved. In particular, we propose several physics-inspired deep learning architectures for sequence modelling as well as for graph representation learning. The proposed architectures mitigate central problems in each corresponding domain, such as the vanishing and exploding gradients problem for recurrent neural networks or the oversmoothing problem for graph neural networks. Finally, we show that this leads to state-of-the-art performance on several widely used benchmark problems.

Tue, 24 May 2022

14:00 - 15:00
C6

A Mechanism for the Emergence of Chimera States

Adilson Motter
(Northwestern University)
Abstract

Chimera states have attracted significant attention as symmetry-broken states exhibiting the coexistence of coherence and incoherence. Despite the valuable insights gained by analyzing specific systems, the understanding of the physical mechanism underlying the emergence of chimeras has been incomplete. In this presentation, I will argue that an important class of stable chimeras arise because coherence in part of the system is sustained by incoherence in the rest of the system. This mechanism may be regarded as a deterministic analog of noise-induced synchronization and is shown to underlie the emergence of so-called strong chimeras. These are chimera states whose coherent domain is formed by identically synchronized oscillators. The link between coherence and incoherence revealed by this mechanism also offers insights into the dynamics of a broader class of states, including switching chimera states and incoherence-mediated remote synchronization.

Subscribe to C6