Fri, 09 May 2014

14:15 - 15:15
C6

Numerical modelling of river dynamics

Andrew Nicholas
(University of Exeter)
Abstract

Numerical models provide valuable tools for integrating understanding of riverine processes and morphology. Moreover, they have considerable potential for use in investigating river responses to environmental change and catchment management, and for aiding the interpretation of alluvial deposits and landforms. For this potential to be realised fully, such models must be capable of representing diverse river styles, and the spatial and temporal transitions between styles that can be driven by environmental forcing. However, while numerical modelling of rivers has advanced significantly over the past few decades, this has been accomplished largely by developing separate approaches to modelling different styles of river (e.g., meanders and braided networks). In addition, there has been considerable debate about what should constitute the ‘basic ingredients’ of river models, and the degree to which the environmental processes governing river evolution can be simplified in such models. This seminar aims to examine these unresolved issues, with particular reference to the simulation of large rivers and their floodplains.

Wed, 22 Jan 2014

16:00 - 17:00
C6

Subgroups of Hyperbolic groups and finiteness properties

Robert Kropholler
(Oxford)
Abstract

Many interesting properties of groups are inherited by their subgroups examples of such are finiteness, residual finiteness and being free. People have asked whether hyperbolicity is inherited by subgroups, there are a few counterexamples in this area. I will be detailing the proof of some of these including a construction due to Rips of a finitely generated not finitely presented subgroup of a hyperbolic group and an example of a finitely presented subgroup which is not hyperbolic.

Fri, 14 Mar 2014

14:15 - 15:15
C6

Bugs on walls: Understanding biological weathering

Heather Viles
(Oxford Geography)
Abstract

Microbial biofilms grow on most rock and stone surfaces and may play critical roles in weathering. With climate change and improving air quality in many cities in Europe biofilms are growing rapidly on many historic stone buildings and posing practical problems for heritage conservation. With many new field and lab techniques available it is now possible to identify the microbes present and start to clarify their roles. We now need help modelling microbial biofilm growth and impacts in order to provide better advice for conservators.

Fri, 14 Feb 2014

14:15 - 15:15
C6

Particle size segregation and spontaneous levee formation in geophysical mass flows

Nico Gray
(University of Manchester)
Abstract

Hazardous geophysical mass flows, such as snow avalanches, debris-flows and pyroclastic flows, often spontaneously develop large particle rich levees that channelize the flow and enhance their run-out. Measurements of the surface velocity near an advancing flow front have been made at the United States Geological Survey (USGS) debris-flow flume, where 10m^3 of water saturated sand and gravel are allowed to flow down an 80m chute onto a run-out pad. In the run-out phase the flow front is approximately invariant in shape and advances at almost constant speed. By tracking the motion of surface tracers and using a simple kinematic model, it was possible to infer bulk motion as incoming material is sheared towards the front, over-run and shouldered to the side. At the heart of the levee formation process is a subtle segregation-mobility feedback effect. Simple models for particle segregation and the depth-averaged motion of granular avalanches are described and one of the first attempts is made to couple these two types of models together. This process proves to be non-trivial, yielding considerable complexity as well as pathologies that require additional physics to be included.

Fri, 31 Jan 2014

14:15 - 15:15
C6

The fast flow of Jakobshavn and its subglacial drainage system

Mauro Werder
(University of Bristol)
Abstract

Jakobshavn Isbrae and many other fast flowing outlet glaciers of present

and past ice sheets lie in deep troughs which often have several

overdeepened sections. To make their fast flow possible their bed needs

to be slippery which in turn means high basal water pressures. I will

present a model of subglacial water flow and its application to

Jakobshavn. I find that, somewhat surprisingly, the reason for

Jakobshavn's fast flow might be the pressure dependence of the melting

point of ice. The model itself describes the unusual fluid dynamics occurring underneath the ice; it has an interesting mathematical structure that presents computational challenges.

Thu, 13 Mar 2014

16:00 - 17:00
C6

Harmonic Maps and Heat Flows

Roland Grinis
Abstract

I plan to give a non technical introduction (i.e. no prerequisites required apart basic differential geometry) to some analytic aspects of the theory of harmonic maps between Riemannian manifolds, motivate it by briefly discussing some relations to other areas of geometry (like minimal submanifolds, string topology, symplectic geometry, stochastic geometry...), and finish by talking about the heat flow approach to the existence theory of harmonic maps with some open problems related to my research.

Thu, 06 Mar 2014

16:00 - 17:00
C6

Basic examples in deformation quantisation

Emanuele Ghedin
Abstract

Following last week's talk on Beilinson-Bernstein localisation theorem, we give basic notions in deformation quantisation explaining how this theorem can be interpreted as a quantised version of the Springer resolution. Having attended last week's talk will be useful but not necessary.

Thu, 27 Feb 2014

16:00 - 17:00
C6

Beilinson-Bernstein Localization Theorem

Georgia Christodoulou
Abstract

We will talk about the Beilinson-Bernstein localization theorem, which is a major result in geometric representation theory. We will try to explain the main ideas behind the theorem and this will lead us to some geometric constructions that are used in order to produce representations. Finally we will see how the theorem is demonstrated in the specific case of the Lie algebra sl2

Thu, 20 Feb 2014

16:00 - 17:00
C6

Doctor, I look at complex and symplectic structures and I see the same!

Roberto Rubio
Abstract

This talk will give an introduction to generalized complex geometry, where complex and symplectic structures are particular cases of the same structure, namely, a generalized complex structure. We will also talk about a sister theory, generalized complex geometry of type Bn, where generalized complex structures are defined for odd-dimensional manifolds as well as even-dimensional ones.

Subscribe to C6