14:00
D-spaces (3): Irreducibility and (a)D-spaces
Abstract
We'll discuss the connection between irreducibilty, D- and
aD-spaces.
We'll discuss the connection between irreducibilty, D- and
aD-spaces.
I plan to give a non technical introduction (i.e. no prerequisites required apart basic differential geometry) to some analytic aspects of the theory of harmonic maps between Riemannian manifolds, motivate it by briefly discussing some relations to other areas of geometry (like minimal submanifolds, string topology, symplectic geometry, stochastic geometry...), and finish by talking about the heat flow approach to the existence theory of harmonic maps with some open problems related to my research.
Following last week's talk on Beilinson-Bernstein localisation theorem, we give basic notions in deformation quantisation explaining how this theorem can be interpreted as a quantised version of the Springer resolution. Having attended last week's talk will be useful but not necessary.
We will talk about the Beilinson-Bernstein localization theorem, which is a major result in geometric representation theory. We will try to explain the main ideas behind the theorem and this will lead us to some geometric constructions that are used in order to produce representations. Finally we will see how the theorem is demonstrated in the specific case of the Lie algebra sl2
This talk will give an introduction to generalized complex geometry, where complex and symplectic structures are particular cases of the same structure, namely, a generalized complex structure. We will also talk about a sister theory, generalized complex geometry of type Bn, where generalized complex structures are defined for odd-dimensional manifolds as well as even-dimensional ones.
Quivers are directed graphs which can be thought of as "space" in noncommutative geometry. In this talk, we will try to establish a link between noncommutative geometry and its commutative counterpart. We will show how one can construct (differential graded) quivers which are "equivalent" (in the sense of derived category of representations) to vector bundles on smooth varieties.
Ricci solitons were introduced by Richard Hamilton in the 80's and they are a generalization of the better know Einstein metrics. During this talk we will define the notion of Ricci soliton and I will try to convince you that these metrics arise "naturally" in a number of different settings. I will also present various examples and talk a bit about some symmetry properties that Ricci solitons have.
Note: This talk is meant to be introductory and no prior knowledge about Einstein metrics will be assumed (or necessary).
We give a short exposition on the zeta determinant for a Laplace - type operator on a closed Manifold as first described by Ray and Singer in their attempt to find an analytic counterpart to R-torsion.