Derived equivalence between vector bundles and dg-quivers
Abstract
Quivers are directed graphs which can be thought of as "space" in noncommutative geometry. In this talk, we will try to establish a link between noncommutative geometry and its commutative counterpart. We will show how one can construct (differential graded) quivers which are "equivalent" (in the sense of derived category of representations) to vector bundles on smooth varieties.
Ricci Solitons and Symmetry
Abstract
Ricci solitons were introduced by Richard Hamilton in the 80's and they are a generalization of the better know Einstein metrics. During this talk we will define the notion of Ricci soliton and I will try to convince you that these metrics arise "naturally" in a number of different settings. I will also present various examples and talk a bit about some symmetry properties that Ricci solitons have.
Note: This talk is meant to be introductory and no prior knowledge about Einstein metrics will be assumed (or necessary).
On the zeta determinant
Abstract
We give a short exposition on the zeta determinant for a Laplace - type operator on a closed Manifold as first described by Ray and Singer in their attempt to find an analytic counterpart to R-torsion.
Free-by-cyclic groups are large
Abstract
I will introduce and motivate the concept of largeness of a group. I will then show how tools from different areas of mathematics can be applied to show that all free-by-cyclic groups are large (and try to convince you that this is a good thing).
14:00
Diamonds
Abstract
We take a look at diamond and use it to build interesting
mathematical objects.
Totally geodesic surfaces and Dehn surgery.
Abstract
I will show how to construct an infinite family of totally geodesic surfaces in the figure eight knot complement that do not remain totally geodesic under certain Dehn surgeries. If time permits, I will explain how this behaviour can be understood via the theory of quadratic forms.
TQFTs to Segal Spaces
Abstract
We will discuss TQFTs (at a basic level), then higher categorical extensions, and see how these lead naturally to the notion of Segal spaces.
14:00
D-spaces: (2.5) Buzyakova's conjecture
Abstract
We will finish presenting Nyikos' counterexample to
Bozyakova's conjecture: If e(Y) = L(Y) for every subspace Y of X, must X
be hereditarily D?