Tue, 17 May 2022

14:00 - 15:00
C6

Epidemics, synchronization and rumors spreading in complex networks

Angélica Sousa da Mata
(Federal University of Lavras)
Abstract

Synchronization, epidemic processes and information spreading are natural processes that emerge from the interaction between people. Mathematically, all of them can be described by models that, despite their simplicity, they can predict collective behaviors. In addition, they have in common a very interesting feature: a phase transition from an active state to an absorbing state. For example, the spread of an epidemic is characterized by the infection rate, the control parameter, which basically determines whether the epidemic will spread in the network or, if this rate is very low, few people become infected and the system falls into an absorbing state where there are no more infected people. In this presentation we will present the analytical and computational approaches used to investigate these classical models of statistical physics that present phase transitions and we will also show how the network topology influences such dynamical processes. The behavior of such dynamics can be much richer than we imagine.

Tue, 10 May 2022

14:00 - 15:00
C6

Extracting backbones from bipartite projections: comparing hard and soft constraints

Zachary Neal
(Michigan State University)
Abstract

Co-occurrence networks formed by bipartite projection are widely studied in many contexts, including politics (bill co-sponsorship), bibliometrics (paper co-authorship), ecology (species co-habitation), and genetics (protein co-expression). It is often useful to focus on the backbone, a binary representation that includes only the most important edges, however many different backbone extraction models exist. In this talk, I will demonstrate the "backbone" package for R, which implements many such models. I will also use it to compare two promising null models: the fixed degree sequence model (FDSM) that imposes hard constraints, and the stochastic degree sequence model (SDSM) that imposes soft constraints, on the bipartite degree sequences. While FDSM is more statistically powerful, SDSM is more efficient and offers a close approximation.

Tue, 03 May 2022

14:00 - 15:00
C6

How Network Filtering can extract knowledge from data

Tiziana Di Matteo
(King's College London)
Abstract

In this talk I will present network-theoretic tools [1-2] to filter information in large-scale datasets and I will show that these are powerful tools to study complex datasets. In particular I will introduce correlation-based information filtering networks and the planar filtered graphs (PMFG) and I will show that applications to financial data-sets can meaningfully identify industrial activities and structural market changes [3-4].

It has been shown that by making use of the 3-clique structure of the PMFG a clustering can be extracted allowing dimensionality reduction that keeps both local information and global hierarchy in a deterministic manner without the use of any prior information [5-6]. However, the algorithm so far proposed to construct the PMFG is numerically costly with O(N3) computational complexity and cannot be applied to large-scale data. There is therefore scope to search for novel algorithms that can provide, in a numerically efficient way, such a reduction to planar filtered graphs. I will introduce a new algorithm, the TMFG (Triangulated Maximally Filtered Graph), that efficiently extracts a planar subgraph which optimizes an objective function. The method is scalable to very large datasets and it can take advantage of parallel and GPUs computing [7]. Filtered graphs are valuable tools for risk management and portfolio optimization too [8-9] and they allow to construct probabilistic sparse modeling for financial systems that can be used for forecasting, stress testing and risk allocation [10].

Filtered graphs can be used not only to extract relevant and significant information but more importantly to extract knowledge from an overwhelming quantity of unstructured and structured data. I will provide a practitioner example by a successful Silicon Valley start-up, Yewno. The key idea underlying Yewno’s products is the concept of the Knowledge Graph, a framework based on filtered graph research, whose goal is to extract signals from evolving corpus of data. The common principle is that a methodology leveraging on developments in Computational linguistics and graph theory is used to build a graph representation of knowledge [11], which can be automatically analysed to discover hidden relations between components in many different complex systems. This Knowledge Graph based framework and inference engine has a wide range of applications, including finance, economics, biotech, law, education, marketing and general research.

 

[1] T. Aste, T. Di Matteo, S. T. Hyde, Physica A 346 (2005) 20.

[2] T. Aste, Ruggero Gramatica, T. Di Matteo, Physical Review E 86 (2012) 036109.

[3] M. Tumminello, T. Aste, T. Di Matteo, R. N. Mantegna, PNAS 102, n. 30 (2005) 10421.

[4] N. Musmeci, Tomaso Aste, T. Di Matteo, Journal of Network Theory in Finance 1(1) (2015) 1-22.

[5] W.-M. Song, T. Di Matteo, and T. Aste, PLoS ONE 7 (2012) e31929.

[6] N. Musmeci, T. Aste, T. Di Matteo, PLoS ONE 10(3): e0116201 (2015).

[7] Guido Previde Massara, T. Di Matteo, T. Aste, Journal of Complex networks 5 (2), 161 (2016).

[8] F. Pozzi, T. Di Matteo and T. Aste, Scientific Reports 3 (2013) 1665.

[9] N. Musmeci, T. Aste and T. Di Matteo, Scientific Reports 6 (2016) 36320.

[10] Wolfram Barfuss, Guido Previde Massara, T. Di Matteo, T. Aste, Phys.Rev. E 94 (2016) 062306.

[11] Ruggero Gramatica, T. Di Matteo, Stefano Giorgetti, Massimo Barbiani, Dorian Bevec and Tomaso Aste, PLoS One (2014) PLoS ONE 9(1): e84912.

Tue, 26 Apr 2022

14:00 - 15:00
C6

Drug Pair Scoring Theory, Models and Software

Benedek Rozemberczki
Further Information

Dr. Benedek Rozemberczki is currently a machine learning engineer at AstraZeneca.

Abstract

Pair combination repurposing of drugs is a common challenge faced by researchers in the pharmaceutical industry. Network biology and molecular machine learning based drug pair scoring techniques offer computation tools to predict the interaction, polypharmacy side effects and synergy of drugs. In this talk we overview of three things: (a) the theory and unified model of drug pair scoring (b) a relational machine learning model that can solve the pair scoring task (c) the design of large-scale machine learning systems needed to tackle the pair scoring task.

ArXiv links: https://arxiv.org/abs/2111.02916https://arxiv.org/abs/2110.15087https://arxiv.org/abs/2202.05240.

ML library: https://github.com/AstraZeneca/chemicalx

Tue, 19 Apr 2022

14:00 - 15:00
C6

Epidemics on networks: From complicated structures to simple dynamics

Bastian Prasse
(European Centre for Disease Prevention and Control)
Abstract

The spread of an infectious disease crucially depends on the contact patterns of individuals, which range from superspreaders and clustered communities to isolated individuals with only a few regular contacts. The contact network specifies all contacts either between individuals in a population or, on a coarser scale, the contacts between groups of individuals, such as households, age groups or geographical regions. The structure of the contact network has a decisive impact on the viral dynamics. However, in most scenarios, the precise network structure is unknown, which constitutes a tremendous obstacle to understanding and predicting epidemic outbreaks.

This talk focusses on a stark contrast: network structures are complicated, but viral dynamics on networks are simple. Specifically, denote the N x 1 viral state vector by I(t) = (I_1(t), ..., I_N(t)), where N is the network size and I_i(t) is the infection probability of individual i at time t. The dynamics are “simple” in the way that the state I(t) evolves in a subspace X of R^N of astonishingly low dimension dim(X) << N. The low dimensionality of the viral dynamics has far-reaching consequences. First, it is possible to predict an epidemic outbreak, even without knowing the network structure. Second, provided that the basic reproduction number R_0 is close to one, the Susceptible-Infectious-Susceptible (SIS) epidemic model has a closed-form solution for arbitrarily large and heterogeneous contact networks.

Tue, 15 Mar 2022
14:00
C6

Colouring locally sparse graphs with the first moment method

Eoin Hurley
(Heidelberg University)
Abstract

A classical theorem of Molloy and Johansson states that if a graph is triangle free and has maximum degree at most $\Delta$, then it has chromatic number at most $\frac{\Delta}{\log \Delta}$. This was extended to graphs with few edges in their neighbourhoods by Alon-Krivelevich and Sudakov, and to list chromatic number by Vu. I will give a full and self-contained proof of these results that relies only on induction and the first moment method.

Thu, 03 Mar 2022
11:30
C6

Monadic Second Order interpretations

Mikołaj Bojańczyk
(University of Warsaw/University of Oxford)
Abstract

MSO can be used not only to accept/reject words, but also to transform words into other words, e.g. the doubling function w $\mapsto$ ww. The traditional model for this is called MSO transductions; the idea is that each position of the output word is interpreted in some position of the input word, and MSO is used to define the order on output positions and their labels. I will explain that an extension, where output positions are interpreted using $k$-tuples of input positions, is (a) is also well behaved; and (b) this is surprising.

Fri, 11 Feb 2022
16:00
C6

Renormalization Group Flows on Line Defects

Avia Raviv-Moshe
(Simons Center Stony Brook)
Further Information

It is also possible to join virtually via zoom.

Abstract

We will consider line defects in d-dimensional CFTs. The ambient CFT places nontrivial constraints on renormalization group flows on such line defects. We will see that the flow on line defects is consequently irreversible and furthermore a canonical decreasing entropy function exists. This construction generalizes the g theorem to line defects in arbitrary dimensions. We will demonstrate this generalization in some concrete examples, including a flow between Wilson loops in 4 dimensions, and an O(3) bosonic theory coupled to an impurity in the large spin representation of the bulk global symmetry.

Fri, 05 Nov 2021

15:30 - 16:30
C6

Short talks from Algebra PhDs

Algebra DPhil students
(University of Oxford)
Further Information

A collection of bite-size 10-15 minute talks from current DPhil students in the Algebra group. The talks will be accessible to masters students and above.

With plenty of opportunity to chat to current students about what doing a PhD in algebra and representation theory is like!

Subscribe to C6