Mon, 27 Oct 2014

15:45 - 16:45
C6

A local construction of conformal blocks

Andre Henriques
(Utrecht and Oxford)
Abstract

Given a 3-dimensional TQFT, the "conformal blocks" are the
values of that TQFT on closed Riemann surfaces.
The construction that we'll present (joint work with Douglas &
Bartels) takes as only input the value of the TQFT on discs. Towards
the end, I will explain to what extent the conformal blocks that we
construct agree with the conformal blocks constructed e.g. from the
theory of vertex operator algebras.

 

Mon, 20 Oct 2014

15:45 - 16:45
C6

Constructing and classifying TQFTs via surgery

Andras Juhasz
(Oxford)
Abstract

 We describe a framework for defining and classifying TQFTs via
surgery. Given a functor 
from the category of smooth manifolds and diffeomorphisms to
finite-dimensional vector spaces, 
and maps induced by surgery along framed spheres, we give a set of axioms
that allows one to assemble functorial coboridsm maps. 
Using this, we can reprove the correspondence between (1+1)-dimensional
TQFTs and commutative Frobenius algebras, 
and classify (2+1)-dimensional TQFTs in terms of a new structure, namely
split graded involutive nearly Frobenius algebras 
endowed with a certain mapping class group representation. The latter has
not appeared in the literature even in conjectural form. 
This framework is also well-suited to defining natural cobordism maps in
Heegaard Floer homology.

 

Mon, 13 Oct 2014

15:30 - 16:30
C6

Commutative K-theory as a cohomology theory

Ulrike Tillmann
(Oxford)
Abstract

Vector bundles over a compact manifold can be defined via transition 
functions to a linear group. Often one imposes 
conditions on this structure group. For example for real vector bundles on 
may  ask that all 
transition functions lie in the special orthogonal group to encode 
orientability. Commutative K-theory arises when we impose the condition 
that the transition functions commute with each other whenever they are 
simultaneously defined.

We will introduce commutative K-theory and some natural variants of it, 
and will show that they give rise to  new generalised 
cohomology theories.

This is joint work with Adem, Gomez and Lind building on previous work by 
Adem, F. Cohen, and Gomez.

Wed, 18 Jun 2014

17:00 - 17:30
C6

Uniform Diameter Bounds for Families of Finite Groups

Henry Bradford
(Oxford)
Abstract


I shall outline a general method for finding upper bounds on the diameters of finite groups, based on the Solovay-Kitaev procedure from quantum computation. This method may be fruitfully applied to groups arising as quotients of many familiar pro-p groups. Time permitting, I will indicate a connection with weak spectral gap, and give some applications.

Wed, 18 Jun 2014

16:00 - 17:00
C6

A very brief introduction to Waldhausen K-Theory

Simon Gritschacher
(Oxford)
Abstract

Waldhausen defined higher K-groups for categories with certain extra structure. In this talk I will define categories with cofibrations and weak equivalences, outline Waldhausen's construction of the associated K-Theory space, mention a few important theorems and give some examples. If time permits I will discuss the infinite loop space structure on the K-Theory space.

Wed, 28 May 2014

16:00 - 17:00
C6

Introduction to Topological K-theory

Thomas Wasserman
(Oxford)
Abstract
A one hour introduction to topological K-theory, that nifty generalised cohomology theory that is built starting from the semi-ring of vector bundles over a space. As I'll need it on Thursday I'll also explain a model for K-theory in terms of difference bundles, and, if time permits, its connection with Clifford algebras.
Wed, 21 May 2014

16:00 - 17:00
C6

Subgroup separability and special cube complexes

Sam Brown
(UCL)
Abstract

Subgroup separability is a group-theoretic property that has important implications for geometry and topology, because it allows us to lift immersions to embeddings in a finite sheeted covering space. I will describe how this works in the case of graphs, and go on to motivate the construction of special cube complexes as an attempt to generalise the technique to higher dimensions.

Wed, 14 May 2014

16:00 - 17:00
C6

A Casual Introduction to Higher Category Theory

Mark Penney
(Oxford)
Abstract

As the title says, in this talk I will be giving a casual introduction to higher categories. I will begin by introducing strict n-categories and look closely at the resulting structure for n=2. After discussing why this turns out to be an unsatisfying definition I will discuss in what ways it can be weakened. Broadly there are two main classes of models for weak n-categories: algebraic and geometric. The differences between these two classes will be demonstrated by looking at bicategories on the algebraic side and quasicategories on the geometric.

Fri, 06 Jun 2014

14:15 - 15:15
C6

Ice-stream dynamics: the coupled flow of ice sheets and subglacial water.

Teresa Kyrke-Smith
(Oxford)
Abstract

Ice sheets are among the key controls on global climate and sea-level change. A detailed understanding of ice sheet dynamics is crucial so to make accurate predictions of their mass balance into the future. Ice streams are the dominant negative component in this balance, accounting for up to 90$\%$ of the Antarctic ice flux into ice shelves and ultimately into the sea. Despite their importance, our understanding of ice-stream dynamics is far from complete.

A range of observations associate ice streams with meltwater. Meltwater lubricates the ice at its bed, allowing it to slide with less internal deformation. It is believed that ice streams may appear due to a localization feedback between ice flow, basal melting and water pressure in the underlying sediments. I will present a model of subglacial water flow below ice sheets, and particularly below ice streams. This hydrologic model is coupled to a model for ice flow. I show that under some conditions this coupled system gives rise to ice streams by instability of the internal dynamics.

Fri, 20 Jun 2014

14:15 - 15:15
C6

Computable Seismology: Imaging the Earth's interior by numerical waveform modeling and inversion

Tarje Nissen-Meyer
(Oxford)
Abstract

Seismology currently undergoes rapid and exciting advances fueled by a simultaneous surge in recorded data (in both quality and quantity), realistic wave-propagation algorithms, and supercomputing capabilities. This enables us to sample parameter spaces of relevance for imaging the Earth's interior 3D structure with fully numerical techniques. Seismic imaging is the prime approach to illuminate and understand global processes such as mantle convection, plate tectonics, geodynamo, the vigorous interior of the Sun, and delivers crucial constraints on our grasp of volcanism, the carbon cycle and seismicity. At local scales, seismic Earth models are inevitable for hydrocarbon exploration, monitoring of flow processes, and natural hazard assessment.

\\

\\

With a slight focus on global-scale applications, I will present the underlying physical model of realistic wave propagation, its numerical discretization and link such forward modeling to updating Earth models by means of inverse modeling. The associated computational burden to solve high-resolution statistical inverse problems with precise numerical techniques is however entirely out of reach for decades to come. Consequently, seismologists need to take approximations in resolution, physics, data and/or inverse methodology. I will scan a number of such end-member approximations, and focus on our own approach to simultaneously treat wave physics realistically across the frequency band while maximizing data usage and allow for uncertainty quantification. This approach is motivated by decisive approximations on the model space for typical Earth structures and linearized inverse theory.

Subscribe to C6