Subgroup separability and special cube complexes
Abstract
Subgroup separability is a group-theoretic property that has important implications for geometry and topology, because it allows us to lift immersions to embeddings in a finite sheeted covering space. I will describe how this works in the case of graphs, and go on to motivate the construction of special cube complexes as an attempt to generalise the technique to higher dimensions.
A Casual Introduction to Higher Category Theory
Abstract
As the title says, in this talk I will be giving a casual introduction to higher categories. I will begin by introducing strict n-categories and look closely at the resulting structure for n=2. After discussing why this turns out to be an unsatisfying definition I will discuss in what ways it can be weakened. Broadly there are two main classes of models for weak n-categories: algebraic and geometric. The differences between these two classes will be demonstrated by looking at bicategories on the algebraic side and quasicategories on the geometric.
Ice-stream dynamics: the coupled flow of ice sheets and subglacial water.
Abstract
Ice sheets are among the key controls on global climate and sea-level change. A detailed understanding of ice sheet dynamics is crucial so to make accurate predictions of their mass balance into the future. Ice streams are the dominant negative component in this balance, accounting for up to 90$\%$ of the Antarctic ice flux into ice shelves and ultimately into the sea. Despite their importance, our understanding of ice-stream dynamics is far from complete.
A range of observations associate ice streams with meltwater. Meltwater lubricates the ice at its bed, allowing it to slide with less internal deformation. It is believed that ice streams may appear due to a localization feedback between ice flow, basal melting and water pressure in the underlying sediments. I will present a model of subglacial water flow below ice sheets, and particularly below ice streams. This hydrologic model is coupled to a model for ice flow. I show that under some conditions this coupled system gives rise to ice streams by instability of the internal dynamics.
Computable Seismology: Imaging the Earth's interior by numerical waveform modeling and inversion
Abstract
Seismology currently undergoes rapid and exciting advances fueled by a simultaneous surge in recorded data (in both quality and quantity), realistic wave-propagation algorithms, and supercomputing capabilities. This enables us to sample parameter spaces of relevance for imaging the Earth's interior 3D structure with fully numerical techniques. Seismic imaging is the prime approach to illuminate and understand global processes such as mantle convection, plate tectonics, geodynamo, the vigorous interior of the Sun, and delivers crucial constraints on our grasp of volcanism, the carbon cycle and seismicity. At local scales, seismic Earth models are inevitable for hydrocarbon exploration, monitoring of flow processes, and natural hazard assessment.
\\
\\
With a slight focus on global-scale applications, I will present the underlying physical model of realistic wave propagation, its numerical discretization and link such forward modeling to updating Earth models by means of inverse modeling. The associated computational burden to solve high-resolution statistical inverse problems with precise numerical techniques is however entirely out of reach for decades to come. Consequently, seismologists need to take approximations in resolution, physics, data and/or inverse methodology. I will scan a number of such end-member approximations, and focus on our own approach to simultaneously treat wave physics realistically across the frequency band while maximizing data usage and allow for uncertainty quantification. This approach is motivated by decisive approximations on the model space for typical Earth structures and linearized inverse theory.
Brady's theorem about subgroups of hyperbolic groups
Abstract
Brady showed that there are hyperbolic groups with non-hyperbolic finitely presented subgroups. I will present a new construction of this kind using Bestvina-Brady Morse theory.
Introduction to Lie algebroids
Abstract
Lie algebroids are geometric structures that interpolate between finite-dimensional Lie algebras and tangent bundles of manifolds. They give a useful language for describing geometric situations that have local symmetries. I will give an introduction to the basic theory of Lie algebroids, with examples drawn from foliations, principal bundles, group actions, Poisson brackets, and singular hypersurfaces.
Spectral Networks and Abelianization
Abstract
Spectral networks are certain collections of paths on a Riemann surface, introduced by Gaiotto, Moore, and Neitzke to study BPS states in certain N=2 supersymmetric gauge theories. They are interesting geometric objects in their own right, with a number of mathematical applications. In this talk I will give an introduction to what a spectral network is, and describe the "abelianization map" which, given a spectral network, produces nice "spectral coordinates" on the appropriate moduli space of flat connections. I will show that coordinates obtained in this way include a variety of previously known special cases (Fock-Goncharov coordinates and Fenchel-Nielsen coordinates), and mention at least one reason why generalising them in this way is of interest.
Kitaev's Lattice Model and 123-TQFTs
Abstract
We give an overview of Kitaev's lattice model in the setting of an arbitrary finite group G (where $G = Z_{2}$ is the famous Toric Code). We also exhibit the connection this model has with so-called 123-TQFTs (topological quantum field theories), making use of ideas coming from higher gauge theory and Hopf algebra representations.
Topological Insulators and K-theory
Abstract
Topological insulators are a type of system in condensed matter physics that exhibit a robustness that physicists like to call topological. In this talk I will give a definition of a subclass of such systems: gapped, free fermions. We will look at how such systems, as shown by Kitaev, can be classified in terms of topological K-groups by using the Clifford module model for K-theory as introduced by Atiyah, Bott and Shapiro. I will be using results from Wednesday's JTGT, where I'll give a quick introduction to topological K-theory.