Fri, 19 Oct 2012

10:00 - 11:31
DH 1st floor SR

From Patterns to Modelling - Mathmagics in Land, Sea and Sky: What We Know, Don't Know and What We Think

Visitor
(Maths, Oxford)
Abstract

Links between:

• storm tracks, sediment movement and an icy environment

• fluvial flash flooding to coastal erosion in the UK

Did you know that the recent Japanese, Chilean and Samoan tsunami all led to strong currents from resonance at the opposite end of the ocean?

Journey around the world, from the north Atlantic to the south Pacific, on a quest to explore and explain the maths of nature.

Thu, 26 Jul 2012
14:00
DH 1st floor SR

Uniqueness of the asymptotic empirical distribution of the aligned letter pairs in an optimal alignment of random sequences

Prof. Henry Matzinger
(Georgia Institute of Technology)
Abstract

We consider two independent random sequences of length n.
We consider optimal alignments according to a scoring function S.
We show that when the scoring function S is chosen at random
then with probability 1, the frequency of the aligned letter pairs
converges to a unique distribution as n goes to infinity. We also show
some concentration of measure phenomena.

Fri, 01 Jun 2012

10:00 - 12:30
DH 1st floor SR

Sensor Resource Management

Andy Stove
(Thales UK)
Abstract

The issue of resource management arises with any sensor which is capable either of sensing only a part of its total field of view at any one time, or which is capable of having a number of operating modes, or both.

A very simple example is a camera with a telephoto lens.  The photographer has to decide what he is going to photograph, and whether to zoom in to get high resolution on a part of the scene, or zoom out to see more of the scene.  Very similar issues apply, of course, to electro-optical sensors (visible light or infra-red 'TV' cameras) and to radars.

The subject has, perhaps, been most extensively studied in relation to multi mode/multi function radars, where approaches such as neural networks, genetic algorithms and auction mechanisms have been proposed as well as more deterministic mangement schemes, but the methods which have actually been implemented have been much more primitive.

The use of multiple, disparate, sensors on multiple mobile, especially airborne, platforms adds further degrees of freedom to the problem - an extension is of growing interest.

The presentation will briefly review the problem for both the single-sensor and the multi-platform cases, and some of the approaches which have been proposed, and will highlight the remaining current problems.

Tue, 29 May 2012
13:15
DH 1st floor SR

Lambda calculus and database queries

Huy Vu
Abstract

 Higher-order transformations are ubiquitous within data management. In relational databases, higher-order queries appear in numerous aspects including query rewriting and query specification. In XML databases, higher-order functions are natural due to the close connection of XML query languages with functional programming. We investigate higher-order query languages that combine higher- order transformations with ordinary database query languages. We define higher-order query languages based on Relational Algebra and XQuery. We also study basic problems for these query languages including evaluation, containment, and type inference. We show that even though evaluating these higher-order query languages is non-elementary, there are subclasses that are polynomially reducible to evaluation for ordinary query languages.

Tue, 12 Jun 2012
13:15
DH 1st floor SR

Hermite functions and hypercollisions in the simulation of nuclear fusion plasmas

Joseph Parker
Abstract

 Nuclear fusion offers the prospect of abundant clean energy production, but the physical and engineering challenges are very great. In nuclear fusion reactors, the fuel is in the form of a plasma (charged gas) which is confined at high temperature and density using a toroidal magnetic field. This configuration is susceptible to turbulence, which transports heat out of the plasma and prevents fusion. It is believed that rotating the plasma suppresses turbulence, but experiments are expensive and even modest numerical simulation requires hundreds of thousands of CPU hours. We present a numerical technique for one of the five phase-space dimensions that both improves the accuracy of the calculation and greatly reduces the resolution required.

Tue, 15 May 2012
13:15
DH 1st floor SR

Mathematical Modelling and Numerical Simulation of Tissue Engineered Bone

Katie Leonard
Abstract

 The use of tissue engineered implants could facilitate unions in situations where there is loss of bone or non-union, thereby increasing healing time, reducing the risk of infections and hence reducing morbidity. Currently engineered bone tissue is not of sufficient quality to be used in widespread clinical practice.  In order to improve experimental design, and thereby the quality of the tissue-constructs, the underlying biological processes involved need to be better understood. In conjunction with experimentalists, we consider the effect hydrodynamic pressure has on the development and regulation of bone, in a bioreactor designed specifically for this purpose. To answer the experimentalists’ specific questions, we have developed two separate models; in this talk I will present one of these, a multiphase partial differential equation model to describe the evolution of the cells, extracellular matrix that they deposit, the culture medium and the scaffold.  The model is then solved using the finite element method using the deal.II library.

Tue, 01 May 2012
13:15
DH 1st floor SR

Overlapping Communities and Consensus Clustering

Lucas Jeub
Abstract

With the advent of powerful computers and the internet, our ability to collect and store large amounts of data has improved tremendously over the past decades. As a result, methods for extracting useful information from these large datasets have gained in importance. In many cases the data can be conveniently represented as a network, where the nodes are entities of interest and the edges encode the relationships between them. Community detection aims to identify sets of nodes that are more densely connected internally than to the rest of the network. Many popular methods for partitioning a network into communities rely on heuristically optimising a quality function. This approach can run into problems for large networks, as the quality function often becomes near degenerate with many near optimal partitions that can potentially be quite different from each other. In this talk I will show that this near degeneracy, rather than being a severe problem, can potentially allow us to extract additional information

Fri, 25 May 2012

11:00 - 12:30
DH 1st floor SR

Parameter estimation for electrochemical cells

David Howey
(Department of Engineering Science, University of Oxford)
Abstract

Please note the unusual start-time.

In order to run accurate electrochemical models of batteries (and other devices) it is necessary to know a priori the values of many geometric, electrical and electrochemical parameters (10-100 parameters) e.g. diffusion coefficients, electrode thicknesses etc. However a basic difficulty is that the only external measurements that can be made on cells without deconstructing and destroying them are surface temperature plus electrical measurements (voltage, current, impedance) at the terminals. An interesting research challenge therefore is the accurate, robust estimation of physically realistic model parameters based only on external measurements of complete cells. System identification techniques (from control engineering) including ‘electrochemical impedance spectroscopy’ (EIS) may be applied here – i.e. small signal frequency response measurement. However It is not clear exactly why and how impedance correlates to SOC/ SOH and temperature for each battery chemistry due to the complex interaction between impedance, degradation and temperature.

I will give a brief overview of some of the recent work in this area and try to explain some of the challenges in the hope that this will lead to a fruitful discussion about whether this problem can be solved or not and how best to tackle it.

Thu, 07 Jun 2012

13:00 - 14:00
DH 1st floor SR

Hybrid Modelling of Reaction, Diffusion and Taxis Processes in Biology

Radek Erban
Abstract

I will discuss methods for spatio-temporal modelling in cellular and molecular biology. Three classes of models will be considered: (i) microscopic (molecular-based, individual-based) models which are based on the simulation of trajectories of individual molecules and their localized interactions (for example, reactions); (ii) mesoscopic (lattice-based) models which divide the computational

domain into a finite number of compartments and simulate the time evolution of the numbers of molecules in each compartment; and (iii) macroscopic (deterministic) models which are written in terms of reaction-diffusion-advection PDEs for spatially varying concentrations. In the first part of my talk, I will discuss connections between the modelling frameworks (i)-(iii). I will consider chemical reactions both at a surface and in the bulk. In the second part of my talk, I will present hybrid (multiscale) algorithms which use models with a different level of detail in different parts of the computational domain. The main goal of this multiscale methodology is to use a detailed modelling approach in localized regions of particular interest (in which accuracy and microscopic detail is important) and a less detailed model in other regions in which accuracy may be traded for simulation efficiency. I will also discuss hybrid modelling of chemotaxis where an individual-based model of cells is coupled with PDEs for extracellular chemical signals.

Subscribe to DH 1st floor SR